
Prof. Dr. Wolfgang Pree
Department of Computer Science

cs.uni-salzburg.at

© Copyright Wolfgang Pree, All Rights Reserved

A Strategic Comparison of
Component Standards

© 2004, W. Pree 2

Contents

 What is a component?

 COM :: Java :: Corba

 Visions

© 2004, W. Pree 3

What is a component?

© 2004, W. Pree 4

Remember: What is missing in OO?

interoperability

visual/interactive configuration

© 2004, W. Pree 5

What is a component?

 Not yet clearly defined

 Is everything a component?

 macros, mixins, functions, procedures, modules,
classes, etc.

 Conventional, heavy-weight components:

 operating systems
 database systems

© 2004, W. Pree 6

Our definition of the term (software) component

 A piece of software with a
programming interface

© 2004, W. Pree 7

Wiring standards (I)

Interoperability problem:

=> wiring standards

Java

C++

ST

C

© 2004, W. Pree 8

Wiring standards (II)

Product-driven definition

Microsoft’s Component Object Model (COM)
 evolutionary / incrementally
 originally targeted at the desktop

=> had to be extended for Internet/Intranet
and Enterprise
 Computing

 carries some legacy
 de facto standardization through the market

dominance of Microsoft

© 2004, W. Pree 9

Wiring standards (III)

Consortium standardization (OMG)

CORBA
 slow progress (compared to COM and

SunSoft’s JavaBeans)

JavaBeans
 based on 100% pure Java
 standards for integrating other components

are under development(EJB, Æ CORBA

© 2004, W. Pree 10

CORBA model of distributed applications

main-Prg.
Proxy

A

Proxy
B

IR
Proxy

(D)SOM, Distributed COM
RMI
OS

IR Disp.

A B
C ...

Impl. Rep.

ORB Core, IBM DSOM ObjMgr
RMI
OS

Dyn. Inv. Int.
(B’s
Interface)
MOfA(p1)

MOfB(p2)

Client ServerNetz

© 2004, W. Pree 11

Characteristics of components

 Information Hiding

 interface described in IDL

 implementation in any
language (Java, ST, C++, C, ...)

 components as binary units (machine-independent byte code is
also OK)

 components can be made persistent

© 2004, W. Pree 12

Component = Class ?

Usually, a component (large-grained component) comprises a
couple of classes (fine-grained components):

client components

© 2004, W. Pree 13

Beyond Wiring

 meta-level informationen

 components can ask others about offered features
 dynamic loading and linking

 semantic aspects

CORBA: wiring
JavaBeans: meta-level (reflection), semantics;

for pure Java wiring becomes irrelevant
COM: all three aspects

© 2004, W. Pree 14

Characteristics of component
standards

© 2004, W. Pree 15

Component Object Model (I)

COM concepts:

 interfaces and components (= COM classes) have a
unique (128-Bit) ID

 each COM-Objekt can be asked, which features are
supported:

interface IUnknown; method QueryInterface

© 2004, W. Pree 16

Component Object Model (II)

A component can have any number of interfaces:

Extension by adding interfaces; existing interfaces
remain untouched.

Int1

Int2

Function1 ptr

FunctionN ptr
. . .

Int2 Functions

Function1

FunctionN
. . .

© 2004, W. Pree 17

JavaBeans

 Properties (→ Setter/Getter methods) are
defined interactively in a Beans environment:

 Events form the communication mechanism:

a

Listener

Source Listener

Listener

© 2004, W. Pree 18

Commonalities and differences

© 2004, W. Pree 19

Commonalities

 OO (Information Hiding, late Binding, Subtyping)
 Compound Documents (original meaning of OLE, idea of OpenDoc)
 component transfer mechanism

 eg JAR files, COM Structured Storage
 coupling based on events
 meta-information
 persistence

© 2004, W. Pree 20

Differences

 memory management
 binary standards
 development environments
 versioning
 application domains
 supported platforms and languages

© 2004, W. Pree 21

Memory management

 COM: tedious reference counting; should be
automated in COM+

 Java: garbage collection; distributed GC not
compatible to Java-CORBA integration

 CORBA: no general solution

© 2004, W. Pree 22

Binary standards

 core aspect of COM

 in Java: byte code; partially through Java Native
Interface (JNI)

 CORBA provides no binary standard (compatibility
based on language bindings)

© 2004, W. Pree 23

Development environments

 COM: solid environments

 Java/JavaBeans: have to grow up

 CORBA: quite unsatisfying

© 2004, W. Pree 24

Versioning

 COM: solved via freezing of interfaces

 Java: based on binary compatibility; tedious rules

 CORBA: not directly supported; unsatisfying version
numbers

© 2004, W. Pree 25

Applications

 COM: focus on the desktop
 Java: focus on the Web
 CORBA: focus on server/Enterprise Computing

 DCOM and EJB aim at server/Enterprise Computing
 ActiveX-components for Windows-Web-Clients

© 2004, W. Pree 26

Languages and platforms (I)

 COM: Due to the binary standard, almost any
language can be supported efficiently on any
platform (DCOM):

Visual Basic, C, C++, C#, Java, Smalltalk, Object
Pascal, Lightning Oberon, Object Cobol, ML, etc.

 Java: binary standard based on Java byte code
+ platform independent (VM per platform)
– too much biased towards Java
not well suited for Ada95, REXX, Oberon;
impossible for C++

© 2004, W. Pree 27

Languages and platforms (II)

 CORBA: ORB developers have to provide
language bindings for particular languages

Thus, only a few languages are supported: C++,
(Smalltalk), Java

© 2004, W. Pree 28

Visions

© 2004, W. Pree 29

Filling the gap

Mega components (SAP, DB systems, operating
systems)

only a few medium-sized components exist
so far

very small components
(GUI components, etc.)

© 2004, W. Pree 30

Mechanistic view

Currently software components assembly requires
exact matching of interfaces:

© 2004, W. Pree 31

Adaptive architectures

Alternative: components configure
themselves automatically through testing &
fitting.

Sources of inspiration:
 Sun’s Jini, Microsoft‘s .NET
 agent technology
 ontologies

?

