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The class of maps and some examples

We shall consider maps T : [0, 1] — [0, 1] of the following type:

1

I There exists a finite or infi-
' nite family

& = {Zk : k € I} of pair-
wise disjoint subintervals of
[0,1] such that

A (gzk> =1

(A ... Lebesgue measure).

T is assumed to satisfy
the following conditions:

0

1

T1) T;, is twice differentiable, and TZ; = [0,1] for all k € I.
|2,

(T2) There exists a non-empty finite set J C I such that Z;, j € J, contains

a fixed point z; with T"(z;) = 1 (indifferent fixed point).

(T3) [T'] 2 ple) > 1 on Uyes 26\ Uje, (35 — &3 +£), ¥e > 0.
(T4) 37 > 0 such that for all j € J,

T is decreasing on (z; — n,z;) N Z;, and
T’ is increasing on (z;,z; + 1) N Z; (z; is a regular source).

(T5) T"/(T")? is bounded on Jyc; Z« (Adler’s condition).

More general classes, in particular, regarding the range structure, are con-
sidered in

e J. Aaronson’s book, Chapter 4: Markov maps (see additional references
there)

e R. Zweimiiller: [Z1],[Z2] (non-Markovian case).

The purpose here is to concentrate on the question how the indifferent fixed
points influence the ergodic (stochastic) properties of the system.
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A map T satisfying (T1) - (T5) is a non-singular transformation on the mea-
sure space ([0, 1], 8, A) where (in this situation) B denotes the Borel o-field
on [0, 1].

We call T' a non-singular transformation on the measure space (X, B, m) if
there exists a set Xy € B with m(X\Xp) = O such that T : Xy — X is
measurable and m(T~!4) = 0 for all A € B with m(A4) = 0. T then also
denotes any measurable extension to X. The same agreement is made re-
garding measure preserving transformations.

In the following we mention a few examples which motivated a unifying
approach. For all these examples the A-absolutely continuous invariant mea-
sure p is known explicitely, and enables conservativity (recurrence) to be seen
immediately by means of

Maharam’s recurrence theorem ([Aal], p. 19): Let T be a measure
preserving transformation on a measure space (X, B, ), and suppose there
exists a set A € B with p(A4) < oo such that | J. ,T"A = X (mod p).
Then T is conservative.

Proof: We have | J5_yT™™A = X (mod p) for all N > 0, and thus
limsup7T"A =X (mod p), ie,

ZIAOT":oo a.e. on X.

n=0

Let W € B be a wandering set, i.e., > - ;1w o T"™ < 1. Then, for all n > 0,

oo > u(Ad) = u(TA) > / leodeu
T

A k=0
= Z/(leT”'k-lw)ode,u
k=0
= / > 1a0T*du. Thus, w(W)=0. o
w

k=0



Example 1 (A. Rényi, 1957; Hungarian version of [R])

T(z):lf’_x (mod 1)

1
1 1
Zr = [1—k+1’1—k+2{’
k=0,1,2,...

J = {0}

du 1

ﬁ(w) -

(Tr=z+z%+... at 0)
0 0.5

Example 2 (H. E. Daniels ([D]), W. Parry ([P2]), 1962)

1

lfm,xeme] !

T(z) = |

é—l,xE(UZH :

Zo = [0’ 1/2] NV ARES (1/2’ 1] ]

J=1{0} :

|

du 1 :
0 0.5

((T3) is not satisfied literally as 7'(1) = —1.)



Example 3: Boole’s transformation

1
T: R-R: T(m)zz—;

dp
—=1:
i

T_l([a’ﬁ]) = [al’ﬁll U [O‘?vﬁ?];

o, g are the solutions of

2

Tr=aqa, ie,z*—ax—1=0.

By Vieta’s theorem,

a; + az = « (and By + B2 = B).

Thus,

/\(T‘l([a,ﬁ])) —(B—a)+(B—w)=F-a=\[e,f]) O

Origin: G. Boole, 1857 ([Boo])

+o00 ay a +00
/_oo f (:1: s Wi _")\n) dz = N (z)dz, f integrable
(@1,--.,an, >0, A1,..., A, €R, n > 1), ie, Ais invariant for
a Qn
— - .= , € R.
Tz r— p— z

Ergodicity of T: R. L. Adler — B. Weiss, 1973 ([AW]; see also [Ad])
F. Schweiger, 1975 ([Schl])

Deeper analysis: J. Aaronson, 1978 ([Aa2])

T is the R-restriction of an inner function of the upper half plane, and can
therefore be studied in a very elegant way using complex analysis. We refer

? b e e - - o wm mae = -



to Chapter 6 of J. Aaronson’s book for this approach.

Change of variables

T belongs to our class up to conjugation. E.g.,

- 1 1
— -1 : - _ =
T=¢oTogp™ ' with ¢(z) T2 o z € (0,1),

T(z) = ;‘_(1—;_””%5 z € [0,1/2),

T(z)=1-T(1 -z), z € (1/2,1],
du 1 1
a® = Etaoaye

9(z)

z%(1 — )%’

g continuous and positive on [0, 1]

(Tz =z+z%+...at 0) 0

Example 4: T(z) =tanz, z € R
J. W. Glaisher, 1870 ([Gl])):

+oo +o00
f(tan :10)54—E = f (m)i—f, flz) integrable,

2 2
oo z _ T

. 1 . . . .
ie, —; is the density of an invariant measure for T'.
x

Ergodicity of T: F. Schweiger, 1978 ([Sch3))

Deeper analysis: J. Aaronson, 1978 ([Aa2] and Chapter 6 of [Aal])




A change of variables (e.g. by ¢(z) = tanw(z — 3), = € (0,1)) yields a map

belonging to our class.

Example 5 (O. I. Bogoyavlensky, 1976)

T acts on a circle in the following way:

Z1,T9,x3 are indifferent fixed
points (circumscribed triangle
not necessarily equilateral); p
infinite

R. Kolodziej, 1981 ([Ko;
see also [Mi)):

du 1 1
2D~ eyl T o]

The proof is based on the
Theorem of Ptolemaeus on
quadrilaterals inscribed in a
circle.

(To treat this example slightly more general conditions are required.)

Example 6 (P. Manneville, 1980 ([Ma]); M. Thaler, 1995 ([Th3])

T(z) = (1+¢e)z+(1—¢€)z® (mod
du _ 1 1
'ﬁx) B 6+(1——E)m+1+(1—5)x

e=0: T = z+2z* (modl), d—“(x) =

dX

g continuous and positive on [0, 1].

1), 0<e<1




1. Basic ergodic properties

The main purpose of this part is to explain the method of auziliary transfor-
mations, which we shall apply to prove the following result.

Theorem ([Thl], [Th2]): Let T : [0,1] — [0,1] satisfy (T1) - (T5). Then
the following assertions hold.

(1) T is conservative and exact with respect to ).
(2) T has a unique o-finite invariant measure p ~ A, and u([0,1]) = oco.

(3) The invariant density % has a version h of the form

h() = ho(@) [[ ——2<, ze[0,10\z;: jeJ},

e T ()

where u; = (T, z; )~', j € J, and hy is continuous and positive on [0, 1].
T(z) = z £ ajlz — z;/P*! + o(|lz — z;[Pi*!)(z — z;) with a; > 0
>1(j € J), then

IE)H‘SL‘-—- xj’_pj’ MRS [0> 1]\{$J tJ€ J},

jeJ

where g is continuous and positive on [0,1]. (Compare with the examples.)

Remarks: Basically, the
invariant density has a shape W
as in the picture, with
Jyhd\ = oo for each neigh-
bourhood U of z;, j € J. To
see this, note that condition
(T5) implies

|z — uj(z)| < const. (z — z;)?,
z€(0,1), je J

The formula for h can al-
so be derived for other classes
of maps, covering examples
with indifferent fixed points

and finite invariant measure.



(1.1) Auxiliary transformations

Given a map T': X — X, auxiliary transformations are obtained by replac-
ing T on suitable subsets by suitable iterates of T'. Widely known examples
are induced transformations and jump transformations. The resulting maps
are often simpler from the ergodic theoretic viewpoint, and various proper-
ties of the original maps can be deduced from them.

(1.1.1) Motivating examples

1. [-transformations: T(z) = fz (mod 1), 8 > 1, 8 & N ([R], [P1],[F])

Difficulty: range structure

Remedy: Replacing T on
the interval [[5]/3,1] by suit-
able iterates yields a map with
full branches.

Simple case: =

- —_—— {1’-1

1P T

Evidently, S is stochastically simpler than T'. In particular, A is invariant for

S.



General case:

Z = [k E+1

5
€ = k:& Tj—l(l) € Zy (j > 1),

[, OSk<[ﬂ], Z[ﬁ]=[—,1];

then Z %’; = 1. Define S by
j=1

n-—1 n
S(x) = T™=z), z € [Z%,Z%[, n>1

=17 =1

The process terminates iff 71 = 0 for some n (Markov case). In any case,
however, the resulting map has full branches. Thus, auxiliary transforma-
tions may be employed to reduce the study of non-Markovian maps to the
Markovian case.

2. Daniels—Parry transformation

T
——, z€[0,1/2)= %,
T(z) =
%—1, ze(1/2,1 =2,
du 1

Difficulty: The indifferent fixed point O causes long sojourns near 0.

Remedy ([Schl]): Jumping over runs of visits to Z; (’speeding up’) neu-
tralizes the effect of the indifferent fixed point, formally:

S(z)=Trz if T'(z) € Zpfor0<j<n-2and T" (z) € Z
(picture see next page).

1
It turns out that S(z) = - (mod 1), i.e., S is the map associated with

ordinary continued fractions (Gau map). From the well known ergodic
properties of S we can easily deduce ergodic properties of T'. For example,
the invariant density of S can be calculated from that of T



o - T Tt T 1

This is the type of auxiliary transformations we shall use to prove the theo-
rem stated at the beginning.

d,\_l'

1
3. Boole’s transformation: T(z) =z — O e R,

’ / Difficulty: The natural
- reference measure is infi-
nite; oo are indifferent

/ fixed points.

Remedy: (i) Change
A~ variables to get a map
- on [0,1] and define S in

a similar way as in the
preceding example, or

(ii) ’induce away’ from
the indifferent  fized
points ([AW]):

10



1

a=]- \/% ﬁ] (A=[~1,1] in [AW])

wa(z) =inf{n > 1: T"(z) € A} (first return time)

S(z) =T¢@®)(z), z€ A ... induced or first return map on A.

S has full branches, and satisfies the conditions of R. Adler’s Folklore theo-
rem, i.e.,

e S is uniformly expanding
e §"/(8")? is bounded.

According to a general property of induced transformations, A is also invari-
ant for S.

(1.1.2) The general concept

Let T be a non-singular transformation on the o-finite measure space (X, B, m).

An auxiliary transformation on a set A € B is defined through a function
¢: A — NU{oo} satisfying the following conditions:

(i) ¢ is measurable with respect to AN B, and ¢ < co a.e. on A,
(ii) T¥®)(z) € A, z € An{p < oo}
We call the a.e. defined map |
Syt A— A: Sy(z) =T*(x)
the auziliary transformation associated with .
Note that (ii) is obviously fulfilled if A = X.
Notation: A, = An{p=n}, neN,

D, = An{p>n}, neNg.

We have: o D() = A, Dn = An+1 U Dn+1, n e No
o S;E)n{p<oo}=U2(ANT"E), EC A

11



Proposition 0: S, is a non-singular transformation on the measure space

(A, AN B,my,.5)-

Proof: S,: AN{p < oo} — A is measurable, m(A\{y < oo}) =0, and
m(S;1(E)) =0 for all E € AN B with m(E) = 0. O

Examples:
1. A=X, p=N(NeN): S,=T%

2. Induced transformations (H. Poincaré, S. Kakutani ([Kal))
AeB, ACUZ,T™A (modm)
o(z) =inf{n > 1: T™(z) € A} = pa(z)
S,=:Ts ... induced transformation (first return map ) on A

(see §1.5 in J. Aaronson’s book)
3. Jump transformations (R. Fischer, 1972 ([F]), F. SchWeiger, 1975 ([Sch2}))

Characteristicc: A = X, and ¢ is defined through a partition (see
[Schd]).

Let & = {Z; : k € I} be a finite or countably infinite measurable
partition of X, and let

n—1
fn = \/ T_j€1 = {Zkl,...,kn : (k‘l, ceey k‘n) S In},
Jj=0

Ty = {2 € X+ TV7N(2) € Zky, 1< j <1}

(cylinder of order n), n > 1.

Let ¢ be a subclass of |, &, such that

U Z =X (modm), and
Zec

o(x)=inf{n>1: z€ Z, Z €& N(}

Then S, is called the jump transformation associated with (.

Typical examples are the auxiliary transformations in Example 1 and 2 of
(1.1.1).

12



1. [-transformations:

& = {Zo,Z,..., 21}
¢ = class of full cylinders

(Z € &, is called full if T"Z = [0,1[.) Then S, = S as in (L.L.1).

2. Daniels—Parry transformation:

&=1{20,21}, ¢=1{Zn, . kn: kn=1,n2>1}
Then S, = S as in (1.1.1).

In both cases the class { coincides with the class of S,-cylinders. Typically,
jump transformations serve to reduce the class of cylinders to subclasses
which

(i) still generate the given o-algebra (mod m), and

(ii) have specific properties, not valid for the entire cylinder class (full cylin-
ders, bounded distorsion, ... ).

(1.1.3) Carrying over ergodic properties from S, to T’
S:=_5, ... auxiliary transformation, m(A) > 0.

(A) Conservativity

Lemma: If W is wandering for T, AN W is wandering (mod m) for S.

Proof: Y  lsawoS" < > lwoT™ ae. on A. ]

n=0 n=0

Proposition 1: Suppose that for all B € B with u(B) > 0 there exists an
n = n(B) > 0 such that m(ANT"B) > 0. Then,

S conservative = T conservative.

Proof: If W € B is wandering for T, ANT "W is wandering (mod m)
for S for all n > 0. Thus m(ANT"W) =0 for all n > 0, and so m(W) = 0.
0

Note that the basic condition is obviously fulfilled if A = X.

13



(B) Ergodicity
Lemma: E€ BT 'E=E= S (ANE)=ANE (mod m).
Proof: Use STYE) N {p < oo} =2, (A NT™E). ]
Proposition 2: If | J32,T "4 =X (mod m),
S ergodic = T ergodic.

Proof: For E € Bwith T~'E = E we have m(ANE) = 0 or m(ANE*°) = 0.
Suppose m(ANE) = 0. Then m(T"ANE)=m(T™™(ANE)) =0 for all
n > 0. Thus m(E) = m(Uff:O T-"AN E) =0. O

(C) Invariant measures

Let v be a measure on AN B, v K my,.,. Then

WE) =Y v(D,NT™E), E € B,

n=0

defines a measure on B, and p < m.
Proposition 3: v invariant for S = p invariant for T'.

Proof: For E € B,

o0

wTE) = > v(DaNT"VE) [Dy=Ans1UDnyi]
n=0 .
= > v(A.NTTE)+ Y u(D,NT™E), and
n=1 n=1
Y2 V(A NT™E) = v(S Y ANE))=v(ANE) =v(DyN E). O

Exercises: 1. T(z) =fz (mod 1) (8 > 1) has a finite invariant measure
u ~ A, whose density is given by

%(x) = Z ,—8-1-’; 1o m1p(z), = € [0, 1] (Gel’fond-Parry formula ([Ge], [P1])).

n=0

14



2. Let

z
i—:;’ 936[0,1/2],

T(z) = .
~-1, s€(1/21],
and let v be the measure on [0,1] with density (—lz(x) = ;, z € [0,1)].
dA l1+z
Using the fact that v is invariant for the continued fraction map S(z) = %
(mod 1), calculate the invariant density for T'.

(1.1.4) Remarks on induced transformations

For induced transformations ’converses’ of (A), (B) and (C) are available.

Let T4 be as in Example 2 of (1.1.2).

(A)’ T conservative == T, conservative.

Proof: EeAﬂB:ilEOT"=§:1EoT2 a.e. on A. a
n=0

n=0
(B)’ T ergodic => T4 ergodic.
Proof: IfE€ ANB,T;'(E) = E, the set
==} n—-1
Eu | ( N T-7A° ﬂT‘”E) is invariant (mod m) for T. O
n=1 » j=0 )

(C)’ If m is invariant for T and m(A) < oo, my,,, is invariant for T)4.

Proof: See (1.3) of these notes (or §1.5 in [Aal]). ’ 0
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(1.2) Sketch of proof of the basic ergodic properties
Let T : [0,1] — [0, 1] satisfy (T1) - (T5).

Choice of ¢:

7 T € Urgs Zk;
' T€Z;,j€EJ:
o) =

=1+inf{n>1:T"z ¢ Z;}

(< 0 if z # z;);

bl L] Lialy 1 S=35,.
X4 ot
@ is measurable as
{90 = 1} = U Z
kgJ
{p=n} = UU%. 0 n=2
je‘lk#j n—1

S has full branches, and satisfies the following conditions.

Proposition:
(1) 3p > 1such that |S'| > p (S is uniformly expanding)
(2) "/ (S} )? is bounded (Adler’s condition).

(1) is immediate. To get (2) we use a kind of generalization of the summation
formula for the geometric series, given by the following lemma.

16



Lemma ([Thl]): Let f: [0,7] — R (n > 0) be differentiable, increasing and
concave, satisfying 0 < f(z) < 2,0 < z < 7. Then the following estimates
hold for 0 < z < 7:

1+ f'(z) 2= 7@ < ;(fn),(m) < = @)
In particular, T;(f")’(z) ~ T @) (z — 0).

Example: For f(z) =¢-z (0 < g < 1) equality holds.

Recall that u; = (sz)“l, which admits a C'-extension to [0,1] (j € J).
Using the Lemma we see that, for each j € J and each § > 0,

(%) § (u})' is uniformly convergent on [0, 1]\(z; — 6, z; + 6).

n=0

In particular, ) ((u})’ is bounded on sets which are bounded away from
z;, and a routine calculation now proves that S satisfies Adler’s condition.

As a consequence of the Proposition, S is exact (A) and has an invariant
probability measure v ~ A, such that % has a version hg which is Lipschitz
continuous and positive on [0,1]. From (1.1.3) we get:

T is conservative and ergodic (A), and

ME) =Y v(D,NT™E),E € B,

n=0
defines an invariant measure for T', equivalent to A.
As Dp = Ujes ZZ"""j (mod A), n > 1, the density of u has a version

n

h=hs+2§:hsou;-(u;)’.

j€J n=1
(%) implies that h is continuous on [0, 1]\{z; : j € J}, and wehave h > hg > 0
on [0,1).

given by

Finally, the asymptotic equivalence in the Lemma shows that

lim h(:r:)I_[-ﬂz—:y—’—(-m—2 (1€ J)

Tz T —zx;



exists and is positive and finite. This establishes the formula for h.

Uniqueness of p is dicussed in the next section. For the proof of exact-
ness we refer to Theorem 4.4.7 in J. Aaronson’s book. a

(1.3) Uniqueness of invariant measures

The aim here is to prove the following theorem employing the technique
of induced transformations. Again, a question of infinite ergodic theory will
be settled by relating it to finite ergodic theory via auxiliary transformations.

Theorem (Uniqueness of invariant measures)

Let T be a conservative ergodic transformation of a o-finite measure space
(X,B,m). Then, up to multiplication by constants, there is at most one
m-absolutely continuous, o-finite T-invariant measure.

The proof is based on the representation formula given by the next proposi-
tion. As before, w4 denotes the first return time of A, and T4 the induced
transformation on A.

Proposition: Let T be measure preserving on the measure space (X, B, u),
and let A € B satisfy u(A) <ocoand AC |, T ™A (mod p). Then,

n=0 n=0

u(E) = Z/u(Aﬂ {pa>n}NT™"E), Ee€ (U T‘"A) NnB.
Proof: We extend ¢4 to X by p(z) = inf{n > 1: T"z € A}, z € X.
Using

THAN{e>n)=(An{p>n+1HU(4°N{p>n+1}), n>0,

and the invariance of y we get by induction

WE) = Y wAn{p>k}NT™*E)+
k=0
+ u(A°n{p>n}NT™E), n>0, EcB.

18



E=T71A: uA)=pupT1A)

=Y wAn{p=k+1}) +u(A N{p=n+1}), n>0;

since p(A) = > po; (AN {p = k}) < 00, we have
lim p(A°N{p=n})=0.

ECA: An{e>n}NT™E =10, n> 1, hence the formula is obviously
true;

ECAN{p=N}(N>1): ANn{p>n}NT"E C A°N{p =n+ N}
(n >0), so lim, . u(A°N {p >n} NT™E) =0, i.e., the formula holds.

Therefore the formula holds for all measurable £ C (oo, T ™A. 0o

Corollary 1: Let the conditions of the Proposition be satisfied. Then,
(1) H|anp is invariant for T4, and

(ii) the following useful identities hold:
pAN{p>n})=pu(AN{p=n}), neN
(p(z) =inf{n > 1:T"(z) € A}, z € X).
Proof: (i) E€ ANB:
WE) = WANE)=uTH(ANE))

= ZN(A N{p>n}NT AN T-CHDE)

n=0

Z pAn{p=n+1}NT""VE) = W(T'E).
n=0

(ii) In the preceding proof we found

u(A) = p(An{p <n})+u(A°n{p=n}), n=>1,

which gives (ii) . O

19



Corollary 2: Let T be conservative, ergodic and measure preserving on the
o-finite measure space (X, B, u). Then, for all A € B with 0 < p(A4) < oo,

(i) u(E) = iu(A N{pa>n}NT™E), FE€B,and

n=0

(i) p(X) = /A vadp (Kac’s formula).

Proof: (i) Since T is conservative and ergodic, U TTA =X (mod u)
n=0

for each A € B with pu(A) > 0, and the Proposition applies.

(ii) If we put E = X in (i), we obtain

[o <]

W(X) = Y u(An {pa>n}) = [

wadu. ]
n=0 A .

Remarks:

1. (i) shows that u is determined by its values on A N B for arbitrary
sets A € B with 0 < p(A) < oo. (The formula actually also holds if

n(A) = 00.)

2. (ii) says that infinite ergodic theory deals with dynamical systems with
infinite mean return times. In fact, under the conditions of Corollary 2,

p(X) = 0o <= [, padp = oo for one, and hence for all, A € B with
0 < pu(A) < oo.

Proof of the Uniqueness Theorem

Let u,v < m be T-invariant o-finite measures (with u(X), v(X) > 0). Then
i, v ~ m. To see this, let B € B with m(B) > 0. Since T is conservative
and ergodic with respect to m, | J;-, T~ "B = X (mod m), and therefore also
(mod p) and (mod v). In particular, u(B),v(B) > 0.

Now choose A € B such that 0 < u(A),v(A) < co. We may assume p(A) =
v(A) = 1. Then p), 5, Y4ns are equivalent ergodic invariant probability
measures for T4. As we know from finite ergodic theory, this implies u = v
on AN B, and the formula in Corollary 2 (i) yields p = v. |
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Infinite ergodic theory: One-dimensional maps with indifferent fixed points
Maximilian Thaler (Salzburg)

2. Iteration of the Perron—Frobenius operator

The purpose of part 2 is to present a result on the asymptotic behaviour
of the Perron—Frobenius operator for the maps with indifferent fixed points
specified at the beginning, and to introduce several basic concepts from gen-
eral infinite ergodic theory connected with this result.

(2.1) The Perron-Frobenius operator ([Aal], §1.3)

Let T be a non-singular transformation on the o-finite measure space (X, B, m).

For f € Li(m) let vy denote the measure with density f. As T is non-
singular, vy o T~! < m, and the Radon—Nikodym derivative

d(l/f e} T_'l)

- =: Pf exists.

P is a positive linear operator on L;(m), characterized by

/Pfdm: fdm, feLi(m), AcB.
A T-1A

An approximation argument shows that

/Pf-gdm=/f'g°Tdm, f€Ly(m), g€ Lu(m).

The definition of P extends naturally to the set of all non-negative measur-
able functions. P is called the Perron—Frobenius operator (dual, transfer,
Kuzmin, ... operator) of T' with respect to m.

Probabilistic meaning:

f ... probability density
Xo ... random variable with values in X and
density f (initial value of the iteration process)
= X, := T"(Xo) (position after n steps) has density P"f:

Prob(XnGA)=/P"fdm, AeB, n2>0.
A

1



Basic ergodic properties of T in terms of P:

1. T conservative <= 3f € Ly(m), f >0: Z P'f =00 a.e.

-~ n=0
< Vfe€L(m) f>0ae. : ZP”f=oo a.e.
n=0

2. T conservative and ergodic <=

VfeLi(m), f>0, [fdm>0: f:P"f=oo a.e.
=0

3. Texact &=V f € Li(m), [fdm=0: ||P"f], — 0.
4, If p is a measure on B with density A,

g invariant for T <= Ph = h.

(2.2) A convergence theorem

Whereas for interval maps with indifferent fixed points and finite A-absolutely
continuous invariant measure strong results on the iteration of the Perron-
Frobenius operator are available (see e.g. [FS], [LSV], [Yo]), only basic qual-
itative results have been proved for the infinite measure case.

Let (X,B,m) = ([0,1],B,A), and let T satisfy (T1) - (T5). As in part 1, u
denotes the A-absolutely continuous invariant measure, and h a version of g’,{
which is continuous on [0, 1]\{z; : j € J}.

Let &, = V;.:; T~7¢; be the class of cylinders of order n (n > 1). For Z € &,
let
uz := (T"|z)™!, extended to a C'-function on [0, 1].

Then,
P'f = Z fougz-|uyl, fe€Ly(\)or f>0measurable, n > 1.
Ze€bn

Throughout, P"f denotes the version given by this formula.

As T has no A-absolutely continuous invariant probability measure, Krengel’s
stochastic ergodic theorem ([Kr], [Aal]) tells us that

n—1
%ZP’“}” 20 forall feLy(N).
" k=0



However, proper normalization leads to non-trivial limiting behaviour.

Theorem 1 ([CF], [Th4], [Z2]): There exists a sequence (a,) of positive
numbers such that for all Riemann-integrable f on {0, 1]

ln—-l i
agpf_» (/fdA)h

uniformly on compact subsets of [0,1]\{z; : j € J}.

If T(z) = z % ajlz — ;[P + o(Jlz — z;Pi*)(z — z;) with a; > 0,
p; > 1(j€J),and p=max{p;: j € J},

n

lOg’n ? p = 1?
a, ~ const. '

nlP, p>1.

(The proof will be sketched in (2.3) and (2.4).)

Let 7' denote the Perron-Frobenius operator of T' with respect to the in-
variant measure y. As

T =3 P(fh), f € Lalw),

Theorem 1 asserts that
1 n—1 )
OB BL
=0

uniformly on compact subsets of [0,1]\{z; : j € J} for all f € L;(p) such
that fh is R-integrable on [0, 1]. This means that T is pointwise dual ergodic,
and has large classes of uniform sets and Darling-Kac sets. We recall these
concepts, which are particularly relevant to questions of distributional con-

vergence ([Aal], §§3.7, 3.8).

Let T be conservative, ergodic and measure preserving on the o-finite mea-
sure space (X, B, 1), and let T' denote the Perron-Frobenius operator of 7.



T is called pointwise dual ergodic, if there exists a sequence (a,) of positive
numbers such that

n—1

Zka 5 /fdu ae. forall fe Ly(u).

™ k=0

The sequence (ay) is called the return sequence of T. (lim a, = oo, and, if
w(X) = oo, lim = =0,

A set A € B with 0 < pu(A) < oo is called

o uniform for f € Li(p)+ (={f € Li(w): f >0, [ fdu > 0}) if there
exists a sequence (a,) of positive numbers such that

aln S Tkf — / fdp almost uniformly on A
k=0
(i.e., in Loo(1t]ans)),

e a unifom set if A is uniform for some f € L(u)+ ,

e a Darling—Kac set if A is uniform for f =14 .

We mention the following

Proposition (see Proposition 3.7.5 in [Aal]): Let (a,) be a sequence in
R*. If, for some f € Ly(n)+ and some ¢ € R*,

ZT’“f — ¢ a.e.

" k=0

on a set of positive measure, then T is pointwise dual ergodic.

(The proof rests on the representation formula for p in (1.3) and Hurewicz’s
ergodic theorem.)

Thus, in view of Egorov’s theorem we have:

T pointwise dual ergodic <= T has uniform sets.

Now we return to our specific situation.

4



Corollary: Let T : [0,1) — [0,1] satisfy (T1) - (T5). Any set A € B
with A(A) > 0 which is bounded away from the indifferent fixed points is a
uniform set for 7. If, in addition, A\(0A) = 0 (i.e. A is a continuity set for
A), A is a Darling-Kac set for 7. 0

Remark: By a result in [Z2], every set A € B with 0 < u(A) < co can be
approximated arbitrarily close both from the inside and from the outside by
measurable sets which are not Darling-Kac sets.

(2.3) Establishing convergence: Outline of the main
steps

The key to prove an ergodic theoretic result for the maps in our class usually
is to establish an appropriate lemma concerning the iteration of a function
near an indifferent fixed point. An example is the Lemma in (1.2), which we

used to prove the basic ergodic properties. As a particular consequence we
noted that for each £ > 0 there exists a constant C(g) such that

[e ]

(u¥)" < C(e) on [0,1)\ U(mj —€, z; +¢€)

k jeJ

for all 7 € J. The nucleus of the proof of the present result is a stronger
version of these estimates.

Notation:
® Uk, .k, =Uzg, Z = Zk1,--.,kn € En ((k‘l, ceey kn) € In, n > 1)

o A = [0,1]\U(mj —¢e,z;+¢€), €>0.
jeJ

Lemma: For each € > 0 there exists a constant C(¢) such that for alln > 1
and all (ky,...,k,) € I",

n
S k] < Cle) on A
=1

n

(I Gk = G Dl = D(08))

k=1

5



To prove the convergence theorem, it suffices to do the main work for func-
tions f satisfying:

(*¥) f continuous and positive on [0,1], and differentiable on (0,1) with
bounded derivative.

The rest is settled by an approximation procedure.

Using the above lemma we get the following

Proposition: Let f satisfy (x). Then,
(i) P"f satisfies (x) for each n > 0, and
(ii) for any € > 0 there exists a constant K = K(f,€) such that

I(P*fY| < K-P"f on A..

Assume now f satisfies (), and let

fn = (iij') / (i(Pkf)(t0)> y T 2 1)
k=0 k=0

for a fixed tg € [0,1]\{z; : j € J}. By the Proposition, (f,) is uniformly
Lipschitz and bounded on A for each ¢ > 0. Exploiting the uniqueness of
the invariant measure we get by means of the Arzela—Ascoli theorem:

h(to) fn — h uniformly on A, for each € > 0.

Finally, Hurewicz’s ergodic theorem shows that the normalizing sequence
does not depend on f. 0

(2.4) Identifying return sequences: The asymptotic re-
newal equation

The purpose of this section is to explain how to determine the return sequence
(a,) for those maps in our class which behave ’regularly’ at the indifferent
fixed points, e.g., in the sense of the second part of Theorem 1. The main
tool is Karamata’s Tauberian theorem, in combination with the asymptotic
renewal equation ([Aal], §3.8).



We consider the general setting: 7" conservative, ergodic and measure preserv-
ing on the o-finite measure space (X, B, i) with u(X) = oo, and pointwise
dual ergodic with return sequence (a,).

Throughout, let A € B, 0 < u(A) < oo, be a given uniform set, and let
f be a probability density such that A is uniform for f, i.e.,

n-—1

Z T*f — 1 almost uniformly on A.
n =0

The probability measure with density f is denoted by v. Integration yields

-1

A)anNZV *A) (n— ).

Interpreting the successive visits to A as a (delayed) renewal process with
initial distribution v, the sequence (v(T""(A)) is the associated renewal se-
quence.

To determine (a,) we shall essentially proceed as in the classical case. Sup-
pose (un)S2, is the renewal sequence associated with the probability distri-
bution (p,)32; on N, i.e,

'LL()-——'-]., Up =p1un_1+...+pnu0, ’I’LZl

Let ¢, = Zpk, n > 0, and let U, F,Q denote the Laplace transforms of
k>n
(un), (Pn), (¢n) respectively, i.e.,

oo oo o0
= une™, F(s)=) pe™, Q(s)=) gne™, s
n=0 n=1 n=0

The recursion formula for (u,) is equivalent to
U(s)(1-F(s))=1, s >0.
Since 1 — F(s) = (1 — e™*). Q(s), s > 0, this is the same as

1
l1—es’

U(s) - Qs) =

§>0,



n—1 n—1
which connects the order of (Z uk> with that of (Z qk> . The relevant

k=0 k=0
point is that

1
U(s)-Qls) ~ (s 0),
and this relation carries over to our situation.

Asymptotic renewal equation:

Let ¢ be the first return time of A, and let U, @ be defined by

U(S) ZV(T——nA) —ns Z /'L A N {(P > n}) e™ s> 0.
n=0 n=0

and the sets T*(AN {p > n — k}), 0 < k < n, are disjoint, we have

oA = [ ST Lt iy, m2 0
A

k=0
Thus,
/ (Z Tnf e_ns> (Z Lange>n} e—ns> dy = Z v(A,)e ™, s> 0.
A \n=0 n=0 n=0
As

n

SOPEf ~ p(lT) S U(T+A) (0 oo)

k=0
almost uniformly on A, it is not difficult to see that

ZT” fe™n~ ﬁ U(s) (s—0) almost uniformly on A.

n=0



Therefore, () yields

U(s) - Q(s) ~ Y _v(An)e™ (s —0).
n=0
Finally, since lim v(A4,) =1,
= —ns 1 ]‘
> v(An)e ~ s (50 0

n=0

As mentioned above, the main analytic tool we need is Karamata’s Taube-
rian theorem, a core result from the theory of regular variation (see [BGT)
for a comprehensive account). We recall the concepts of regularly varying
functions and sequences.

e A measurable function L : Rt — R with L > 0 on (a,00) for some
a > 0 is called slowly varying at oo if

lim L{ca)

L) =1 foralle>0

(eg. L(x)=L>0, L(z) =logz,...).

o A function f : RY — R is called regularly varying at oo with indez
(exponent) p (p € R) if

f(z) =a”- L(z), z € RT,

with L is slowly varying at oo, or, equivalently, if f is measurable, f > 0
on (a, co) for some a > 0, and

. flex)

=c¢f forall ¢>0.

e A sequence (b,) is regularly varying with index (exponent) p if b, =
f(n), n > 1, where f : Rt — R is regularly varying at co with index p.

The following result is taken from [Fe2], p. 447.



Karamata’s Tauberian theorem for power series (KTT):
Let b, > 0 (n > 0), and suppose that

B(s) = Z b, e ™

n=0

converges for s > 0. If L varies slowly at oo and 0 < p < oo, then each of
the following two relations implies the other:

(1) B(s) ~ (l)p-LG) (s —0) and

n—1
(2) D b~ nf - L(n)/T(1+p) (n— o).
k=0

Furthermore, if the sequence (b,) is monotonic and 0 < p < oo, then (1) is
equivalent to

(3) b, ~nf7t. L(n)/T(p) (n — o0). o

To sum up, (a,) can be calculated if we succeed in determining the sequence
(wn(A)) given by

n-1

wn(4) 1= Y u(An{e > K}) = [ min(p.m)du, n > 1,

k=0
provided that this sequence is regularly varying.

Using (ii) in Corollary 1 in (1.3) we see that

n-—1
wy(A) = p (U T‘kA) , n>1.
k=0

The (order of the) sequence (w,(A)) is called the wandering rate of A.

As for the sequence (a,) we have

%wn(A) — 0, and lm w,(4)=00 (= pu(X)).

Note that, if (a,) [(wn(A))] is regularly varying with index «, then a € [0, 1].

10



Theorem 2 ([Aa3]): (a,) is regularly varying with index « if and only if
(wn(A)) is regularly varying with index 1 — «. In this case,
n

anwnld) ~ T f(2 ~a)

(n — o0).

Proof: KTT combined with the asymptotic renewal equation. O

Corollary: If (a,) [(w,(A))] is regularly varying,
Wy (B) ~ wy(A)  (n — 00)

for all uniform sets B. O

As a first orientation regarding the asymptotic behaviour of (a, w,(A)) with-
out the assumption of regular variation we mention that

1Shmw mwﬁ(ﬁsg

== I

n

always hold. (See Lemma 3.8.5 in [Aal].)

Proof: Since A is uniform for f we have

b, := / (Z ’f’“f) (Z 1Aﬂ{<p>k}> dp ~ apw,(A) (n — o00).
A \k=0 k=0

On the other hand, the formula

V(An) = M ZTk.f : 1Aﬂ{<p>n—-k} d,u (n 2 0))
k=0

employed to prove the asymptotic renewal equation, shows that

n 2n

D> v(Ak) < by <) v(A), n20.

k=0 k=0

As Z v(Ag) ~n (n — oo) the estimates follow. O
k=0

Finally, we return to our maps on [0, 1]. Although the indifferent fixed points
are assumed to be regular sources, the sequences (a,), (w,(A)) are not regu-
larly varying in general. The following result is true, however, for all maps
in the class.

11



Theorem 3 ([Th2]): IfT:[0,1] — [0, 1] satisfies (T1) - (T5) and A, B are
measurable sets of positive measure bounded away from the indifferent fixed

points, then
Wn(A) ~ wp(B) (n — o0).

(If (wn(A)) is regularly varying for some A of the above type, the assertion
follows from the last corollary. The proof for the general case is too technical
to be sketched here.)

Now assume that 7T satisfies (T1) - (T5), and
T(z) =z £ ajlz — ;[P + o(|z — z;[P*) (2 — =)

with a; > 0, p; > 1 (j € J). Let p =max{p; : j € J}.

Choosing a suitable set 4, e.g. A = [0, 1]\ U Z;NT'Z;, it is an advanced

jeJ
exercise to show that
log n, p=1,
wy(A) ~ const.
1
n'"F, p>1,
and thus Theorem 2 yields the second part of Theorem 1. O

(2.5) A remark on strong ratio limit theorems

Let T : [0,1] — [0,1] satisfy (T1) - (T5). In view of Theorem 1 a natural
question is, whether there exists a sequence (b,) of positive numbers such
that

by P"f — (/fdA)h (n — 00)

uniformly on compact subsets of [0, 1]\{z; : j € J} for suitable f € Li(}).

As T is exact with respect to A,
P*f 250 forall feLi()).
Proof: Let f € Li()\) be non-negative. We show that

lim [ PPfdA=0 forall AeB with p(A4) < oo,

n—oo A

12



which implies convergence to 0 in measure. Let A be given, let B be a
measurable set with 0 < p(B) < oo, and let g = % +h1p. Then,

/ P"fdx < ||P"f — P g|, + (/fd/\) M, and
A n(B)

w(BNTA) < u(T™"A) = p(4), n=0.

Since T is exact and [(f — g)dA =0,

lim |[P"f — Pgll, =0, and thus Ii”zﬁ/ Prfdx < (/fd)‘) w4A)
e A u(B)
As u(B) can be chosen arbitrarily large, the proof is complete. )

No general result answering the above question for the entire class of interval
maps considered here seems to be known. For specific examples a result of
this type is proved in [Th5]. We only mention the Lasota—Yorke map, for

which P"f 2,0 (f € Li(X)) was first proved in [LY] :
z 1
11—z °€ [O’ 5]

1
_1, (_al}a
2z T € 3

T(z)=

with h(z) = =. For this map,

8| =

(logn) P*f — (/fd,\)h (n — 00)

uniformly on compact subsets of (0, 1] for all R-integrable f : [0,1] — R.

For a discussion of this problem proposing an approach different from that
in [Th5] we refer to [Z3], or rather, its author.

13
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Infinite ergodic theory: One-dimensional maps with indifferent fixed points

Maximilian Thaler (Salzburg)

3. Distributional limit theorems

In this part we present two examples of distributional limit theorems for
infinite measure preserving transformations, which apply to those maps in
our class whose return sequence is regularly varying:

e the Darling—Kac theorem, and

e the Dynkin-Lamperti arc-sine laws.

The material of (3.1) and (3.2) can be found in [Aal], §§3.6, 3.7. For a
presentation including the necessary background from advanced analysis and
probability we refer to [Z4]. Section (3.3) follows [Th6].

(3.1) J. Aaronson’s compactness theorem for distribu-
tional convergence

An important question when studying convergence in distribution for se-
quences defined in terms of a non-singular transformation is to what extent
the limiting behaviour depends on the initial distribution. In the situations
we shall consider here a compactness theorem due to J. Aaronson enables
the conclusion that convergence with respect to one absolutely continuous
probability measure implies the same limiting behaviour with respect to all
absolutely continuous probabilities.

Notation: Let (X,B,m) be a measure space, let f, : X — [—o00,00] be
measurable (n > 1), and let Y be a random variable on [—o00, 00] (i.e., with
values in [—o0, 00]).

If v is a probability measure on B, we define

fon—=Y <= f, 2= ¥ on the probability space (X, B,v), i.e.,

/Xg o fodv — E(g(Y)) for all g € C([—o0, ]).



Let
Pm = {v : v probability measure on B, v <« m}.
We define
fnLY:@fnL»Y for all v € Pp,.

This type of convergence is called strong distributional convergence.

If ¢ € [~00, 00],
c .
fn — ¢ <= f, — ¢ in measure,

which we also denote by f, — c.

Compactness theorem ([Aad], [Aal]): Let T be a non-singular ergodic
transformation on the o-finite measure space (X, B, m), and let f,: X - R
(n > 1) be measurable, satisfying

ol my

fnoT—-fnLO or

n

Then, for each subsequence (ny) of N there exists a subsequence (m,) and a
random variable Y on [—o0, 00| such that

Frg =Y.

(The proof uses the Banach—Alaoglu theorem and the Riesz representation
theorem. Needless to say, ergodicity is a central argument.) O

Corollary: Let (X,B,m,T) and (f,) be as above, and let Y be a random
variable on [—o00, 00]. Then

fo—Y forsomeuE’Pm4=>fn—f—->Y. O

Application to Birkhoff sums
In the next section we shall apply the corollary in the following way.

Let T be conservative, ergodic and measure preserving on the o-finite mea-
sure space (X, B, ). Suppose there exist A € B, 0 < u(A) < oo, (a,) C Rt
with lim a, = oo, v € P, and a random variable Y on {0, o] such that

n—oo

n-—1

aiZleT’“—”»,u(A)Y.

" k=0



Then,
n—1
ai E foTk £, (/fd,u)Y for all f e Li(p)+.

" k=0

n~1

Proof: Let f, = alZleTk, n>1 Asa, - o0, fooT — f, -0
k=0

is obviously fulfilled. Thus, by the Corollary, f, £, u(A)Y, and Hopf’s
ergodic theorem then yields the full assertion. a

(3.2) The Darling-Kac theorem

Throughout, let T' be conservative, ergodic and measure preserving on the o-
finite measure space (X, B, u) where u(X) = co. We ask for the asymptotic
distributional behaviour of the sojourn times

n—1
Sn].AI:ZlAOTk (H,Zl), A€B>O<#‘(A)<OO,
k=0

or, more generally, of

n—1
Suf :=) _ foT* (n21), fe Li(u)+.

k=0
Regarding absolutely normalized pointwise convergence we quote

Theorem 2.4.2 in [Aal]: Given a sequence (a,) of positive numbers, either

lim inf 1 Snf=0 ae forall feL(u),,

n—oo Ay

or there exists a subsequence (ny) of N such that

lim L Sn.f=00 ae forall feL(u);.

k—oo Gy,

The Darling—Kac theorem, to be formulated below, shows that we have ab-
solutely normalized convergence in weaker senses.

The limiting distributions occurring in this theorem are the so called Mittag—
Leffler distributions (see e.g. [Fe2]).



Let a € [0,1]. The random variable Y, > 0 has the normalized Mittag-Leffler
distribution of order a, if

(CA+ )

B =P R

o

pGNO.

e E(Y,)=1, a€|0,1] (whence 'normalized’)
e Y; =1 (borderline to finite ergodic theory)

e If 0 < a < 1, the distribution of Y, is absolutely continuous, in partic-
ular, Yy, Y;/2 have the densities

o) =, fual)=2eF (120

For0<a<l,

3 1 2 I(1+ka), —y \*?!
fr.(y) = 7ol (1 + o) ; x (sinmka) (m) , y=0.

e Connection with stable distributions

For 0 < a < 1 let X, > 0 have the stable law of order «, specified by
E(e7*X=) = e ¢t > 0. Then,
dist

Y, B r(l+a) X7°.

In our context, a common method to prove distributional limit theorems is
the method of moments, based on Karamata’s Tauberian theorem (KTT; see
(2.4) of these notes). The following definition aims at this procedure.

Let A€ B, 0 < u(A) < oo, and let

Ua(s) = Z W«a'"’, s> 0.

n=0

A is called a moment set for T if

> ([(satardn) et ua) B (g
for all p € Ny.

Note that [,(Sn14)P du/u(A) is the p-th moment of S,14 with respect to
the initial distribution with density ﬁ 14.
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Darling-Kac Theorem ([DK], [Aal], [Aa3], [Aad]): Let T have a moment

set A such that e .
Ua(s) ~ (;) L (;) (s = 0)

with a € [0, 1] and L slowly varying at co. Then,

-al—Snfi’ (/fdy,) Y, forall fe Li(u),;,

where .
— u(ANT*A)
a, = —_— n2>1L
2y

Proof: For all p > 0 we have

i ( /A(SnlA)" du) ™ ~ pl p(4) (%) o (L G))p (s —0).

n=0

Since the sequences ([,(Sn14)P du) are non-decreasing, KTT yields

/A(Snu)” dp ~ p! p(A)(n* L(n))P/T(1 +pa) (n — oo).
If we put p = 1, we see that
p(A)a, ~n*L(n)/T(1+a) (n— ).

Therefore,

[ Satapau ~ ot e ST

forall p > 0, i.e.,

P
I'(1 + pa) a (n— o)

1 v
P Snlg — .u(A) Ya,

where v is the probability measure with density ﬁl 4- In view of (3.1) the
proof is complete. O

Regarding sufficient conditions for the existence of moment sets, we quote

Theorem 3.7.2 in [Aal]: Let T be pointwise dual ergodic with return
sequence (a,). Then, every set A € B, 0 < u(A) < oo, satisfying

n—1
1 .
(%) sup | — ) " T*14ll, 4y < 00
n>1 Qn =0
is a moment set for 7.



Corollary: If T is pointwise dual ergodic, and the return sequence (a,) is
regularly varying with index «, then

ai nf——ca(/fdu)Ya forall fe Li(p)+. O

n

Evidently, (x) is satisfied if A is a Darling-Kac set for T, i.e., if

-1
Z T*14 — w(A) almost uniformly on A.
" k=0

We shall content ourselves with a proof of

(»x): Darling—Kac sets are moment sets.

Before proving this let us return once more to our

Examples: Let T :[0,1] — [0, 1] satisfy (T1) - (T5), and let
T(z) =z £ ajlz — 2/ +o(|z — z;/7*) (¢ — )

with a; > 0, p; > 1 (j € J), and p = max{p; : j € J}. Then, for some
constant ¢ = ¢(T),

Iog n

if p=1, nf £, c/fdu, and,

. 1 c
if p>1, msnf — C(/fd#)yl/p

for all f e Li(u)+

Proof of (xx): Let S, Z lgq0 T n > 0. For each p > 1 there exist

numbers ¢,(7), 1 £ j < p, w1th ¢p(p) = p! such that

P

S=2 o) sP whee 5@ = () @iz0)
=1

As Ua(s) — oo (s — 0) it therefore suffices to prove

= i (/A S@ d,u) e ~ u(A) -(—[14-8(—31)—?- (s —0).

n=0



We proceed by induction, based on the recursion formula
SE =3 (1a-59,) o T+ (p20),
k=1
which is left as an exercise. We have

/ S gy = ZTklA . Sflp_)k dy, and thus
4 4 k=1

Mpi1(s) = /A (i T4 e_"s) (i S,(f’)e_"s> du (s> 0).

n=0

In the proof of the asymptotic renewal equation ((2.4) of these notes) we had
ZT”IA e ™ ~Uas(s) (s—0) almost uniformly on A.
n=1

Therefore, Mpi1(s) ~ Ua(s) - My(s) (s — 0) for all p > 0. Taking into
1(A)
s

account that Mpy(s) ~ (s — 0), we get the desired relation.

a

(3.3) The Dynkin—-Lamperti arc-sine laws

In their most elementary form, arc-sine laws occur in the study of the simple
symmetric random walk on the integers. A detailed presentation for this case,
including many comments, is Chap. III in [Fel], which in fact motivated the
considerations of this section.

Roughly, there are two main types of arc-sine laws:

e the arc-sine laws of renewal theory (Dynkin-Lamperti arc-sine laws for
last visits and related variables)

o the arc-sine laws for random walks (Lévy—Spitzer arc-sine laws for
sojourn times, positions of maxima, ...).

Theorems 1 and 2 in Chap. III of [Fel] introduce both types in terms of
the simple symmetric random walk on Z starting from the origin. We quote
them in their limiting form.



1. Let Z, denote the time of the last visit to the origin in the time interval
[0,n], n > 1. Then

1
(*) Prob (;Z,,Sx) — zarcsin\/:?, 0<z<1l
), 7!'

2. Let N, be the number of times in the inverval [0,n] the “moving par-
ticle” is on the positive side. Then (x) holds for the sequence (N,,) as
well.

Here we consider the first type of arc-sine laws for pointwise dual ergodic
transformations. (For specific one-dimensional maps results of the second
type have recently been obtained in [Th7].)

Throughout, let T be a conservative, ergodic, measure preserving transfor-
mation on the o-finite measure space (X, B, u), and let A € B have finite
positive measure. Given n > 1, we consider the following variables:

o Zu(z) =max{k<n: T*z) e A}, z e | JT*A=: 4,
k=0
Zﬂ(x) = O’ T g Ana
e Y,(z) =inf{k >n: T*z) € A}, z € X, and

o V., =Y, -2, :

XM
N

v

In renewal theoretic language, n — Z,, is the spent waiting time, Y, — n the
residual waiting time, and V,, the total waiting time if the process is inspect-
ed at time n. As T is conservative and ergodic,

ApnTX (modpu) and Y,<oc ae foral n>1.



The asymptotic distributional behaviour of these functions, considered as
random variables on (X, B,v) with v € P,, can be illustrated nicely by
means of computer experiments with maps from our class.

The limiting distributions
For 0 < a < 1 let ¢, be a random variable on (0,1) with density

sin o 1
7 zlme(l—2z)o’

fe(z) =

O0<z<1l,

ie, (o ~ B(e,1 — ) [Fig.(2) on p. 13], and let 7, be a random variable on
(0, 00) with density

sinma 1 — (max{1l —z,0})* .
fne () = - ( x{1+a ) , >0 [Fig.(4) onp. 13].

The density of 1/{, is given by

sin To 1
m z(z-—1)’

fr/¢.(z) = z>1 [Fig.(3) oﬁ p. 13].

Extending these families of distributions continuously to the parameter in-
terval [0, 1] yields

C0=0 (1/C0=OO), C1=1, and o = 00O, ?’)1=0.

Remarks:

e To verify that f¢, , f,. are probability densities note that

Q)T —a) = —

sinTa

e The moments of {, are given by
E () =(-1) (;a), p > 0; in particular, E({,) = c.

e For 7, the parameter can be recovered from Prob(n, > 1) = 7(«),
MTY 0<a<l, 7(0)=1

where (o) =



Dynkin-Lamperti Theorem ([Dy], [La], [Th6]): Let T be pointwise dual
ergodic with return sequence (a,), and let A € B, 0 < p(A4) < oo, be a
uniform set for T, i.e., there exists a probability density f such that

1 n—1

- Z TFf — 1 almost uniformly on A.
" k=0

Then, for a € [0, 1], the following assertions are equivalent:

(1) (an) is regularly varying with index «

©) 27, 5 ¢

®) Y. % 1/

1
(4) ,,_,I'Vn _e') Na

(2)’ ~ Z, -2 ( for some v € P, and some random variable ¢ on [0,1]
' with E(¢) = o
(3)’, (4)’: analogous to (2)’.

By Theorem 2 in (2.4) of these notes a further equivalent condition is that
the wandering rate (w,(A)) varies regularly with exponent 1 — a. O
Examples: Let T : [0,1] — [0, 1] satisfy (T1) - (T5), and let

T(z) =z £ajlz — 2,/ +o(jz — z;[P*) (2 — z5)

with a; > 0, p; > 1 (j € J), and p = max{p; € J}. Then the above
statements hold with o = 1/p for all sets A € B of positive measure which
are bounded away from the indifferent fixed points.

The rest of this section sketches part of the proof of the Theorem. First we
settle the question of dependence on the initial distribution.

1
Lemma: If (f,) denotes any of the sequences <;Zn> , (}-Yn) or (an),

then
fooT — fo 0.

Thus the Corollary in (3.1) shows that it suffices to prove the equivalences
asserted in the Theorem for the probability measure v with density f.

10



Moreover, some of the implications are immediate from
{Zn <k, Yo>m}={Z,<k}, 1<k<n<m.
The main steps left are:

Q) (1) = i—z,, . ¢,, and

(i) = V — n for some random variable on [0, co] with
Prob(n >1)=71(a) = (1).
We only sketch the proof of (i).

Again we use the method of moments, based on KTT. The key tool is a
generalized version of the asymptotic renewal equation. Let U, Q be defined
as in (2.4) of these notes:

U(s) = ZV(T‘"A) e ™, Q Z A n,u%i > n}) e ™ (s>0),

where ¢ is the first return time of A, and let M,(s) (p > 0) be the Laplace
transforms of the p-th moments of (Z,) with respect to v:

Mys) =3 (/A 7 du) e (s> 0).

We prove:
p+1
0 Mo ~r B@(5) -0, p20

Since the sequences ( i) a, 2 du) are non-decreasing, KT'T then yields

P
/ (%Zn) dv — E((%) forall p>0,

1 . .
i.e., —Z, — (4. We consider, in fact, the transforms
n

o0

i) =3/ (n=Zpa)e™ (530, p20),

n=1

for which we have the

11



Generalized asymptotic renewal equation: For all p > 0,

1(=1)rQ¥)(s)

My(s) ~ (=1 U(s) - Q®)(s) s Ak (s

— 0).

(For p = 0, the first equivalence gives U(s) - Q(s) ~ :31- (s —0).)

The proof of the general case uses similar calculations and arguments as the
proof for p = 0. a

Now assume (a,) is regularly varying with index . Then p = 0 yields

Q(s) ~ (1),; G) (s = 0)

with L slowly varying at co. By the Monotone Density Theorem of regular
variation theory (see e.g. [BGT]) it follows that

0~ (7Y ()2 () 6o

"differentiation’ b treating L as a constant). Therefore the generalized
Y g
asymptotlc renewal equation gives

M,(s) ~ p! E(¢?_,) (%)pﬂ (s—=0), p=0.

Since (1_q L (o it is not difficult to verify that this implies (x). O

We mention that our procedure of generalizing the renewal equation also
slightly simplifies the usual proof for the classical case.

12



Limiting densities in the Dynkin-Lamperti theorem

a=1/2 a=2/3
3 3
(2)
1 1
0 1 0 1
3 )
1 3 1 3
1 1
(4)
0 1 3 0 1 3
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