Natural Radiation Environment

- Cosmic sources
- Terrestrial sources

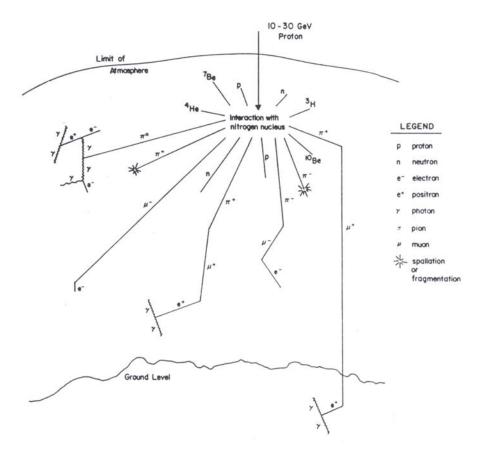
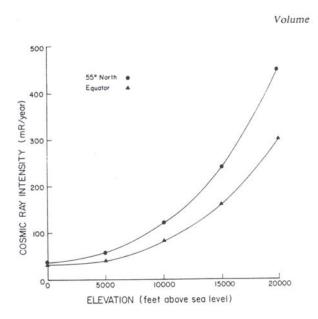



FIGURE 1. Schematic diagram showing the interaction of a primary cosmic proton with an atom in the earth's atmosphere to form numerous secondary particles. Decay products and some interaction possibilities of secondaries are also shown.

RADIONUCLIDES PRODUCED FROM COSMIC RAYS

Radionuclide	Half-life	Primary production mode	Atmospheric production rate (atoms/cm ² -sec)	Detected and measured in
10Be	2.7 × 106 year	Spallation	4.5 × 10 ⁻²	Deep sea sediments
36Cl	3.1 × 105 year	35Cl(n, y)36Cl	1.1 × 10 ⁻³	Rocks, rain
14C	5568 year	14N(n,p)14C	1.8	Organic material, CO2
32Si	500 year	Spallation	1.6 × 10 ⁻⁴	Marine sponges, sea water
³H	12.3 year	Spallation ¹⁴ N(n, ³ H) ¹² C	0.25	Water, air
22Na	2.6 year	Spallation	5.6×10^{-5}	Rain, air, organic material
35S	88 day	Spallation	1.4×10^{-3}	Rain, air, organic material
'Be	53 day	Spallation	8.1×10^{-2}	Rain, air
33P	25 day	Spallation	6.8 × 10 ⁻⁴	Rain, air, organic material
. 32P	14.3 day	Spallation	8.1 × 10-4	Rain, air, organic material
27Na	15.1 hr	Spallation		Rain
38S	2.9 hr	Spallation		Rain
3°C1	55 min	40A(µ-,n) 39Cl	1.6×10^{-3}	Rain
38Cl	37 min	Spallation		Rain

Reproduced from *Health Physics*, Volume 11, Issue 2, 1297, 1965. By permission of the Health Physics Society.

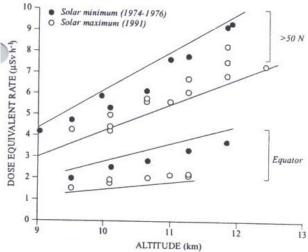


Figure III. Measurement results of cosmic ray exposure rate at aircraft altitudes [E1].

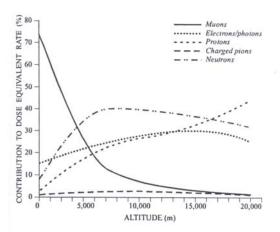


Figure I. Components of the dose equivalent rate from cosmic rays in the atmosphere [O4].

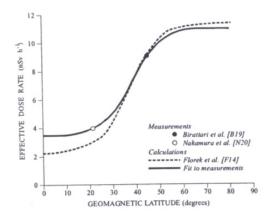


Figure II. Latitude variation in dose rate from cosmic ray neutrons at sea level.

Table 2
PRIMARY DECAY SCHEMES OF ²³⁸U and ²³²Th

Uranium-238			Thorium-232			
Radionuclide	Half-life	Radiation	Radionuclide	Half-life	Radiation	
238[4.5 × 10° year	α,γ	232Th	1.4 × 1010 year	α,γ	
234Th	24 day	β,γ	228Ra	6.7 year	β, γ	
234Pa	1.2 min	β,γ	226Ac	6.1 hr	β, γ	
234[[2.5 × 10 ^s year	α,γ	²²⁸ Th	1.9 year	α,γ	
230Th	8 × 10 ⁴ year	α,γ	224Ra	3.6 day	α, γ	
226Ra	1620 year	α,γ	²²⁰ Rn	55 sec	α, γ	
222Rn	3.8 day	α,γ	216Po*	0.16 sec	α, β	
218Po*	3.1 min	α, β	212Pb	11 hr	B.Y	
214Pb	27 min	B,Y	212Bi*	61 min	α, β, γ	
214Bi*	20 min	α, β, γ	212Po	3 × 10 ⁻⁷ sec	α	
214Po	1.6 × 10 ⁻⁴ sec	a	208Pb	Stable	None	
210Pb	19 year	β,γ				
210Bi*	5.0 day	α, β, γ				
210Po	138 day	α,γ				
206Pb	Stable	None				

Alternate, less frequent branching decays not shown.

Table 3
SINGLY OCCURRING PRIMORDIAL
RADIONUCLIDES*

Radionuclide	Half-life (year)	Radiation	
40K	1.26 × 10°	β,γ	
sov	6 × 1015	B.Y	
87Rb	4.8 × 1010	β	
115In	6 × 1014	β	
123Te	1.2 × 1013	EC.	
138La	1.1 × 1011	B,Y	
142Ce	> 5 × 1016	α	
144Nd	2.4 × 1015	α	
147Sm	1.1×10"	·a	
149Sm	> 1 × 1015	a	
152Gd	1.1 × 1014	a	
174Hf	2 × 1015	a	
176Lu	2.2 × 1010	β,γ	
180Ta	>1 × 1012	β	
187Re	4.3 × 1010	β	
190Pt	6.9 × 1011	α	

Electron capture.

From Eisenbud, M., Environmental Radioactivity, 2nd ed., Academic Press, New York, 1973. With permission.

Table 11 Areas of high natural radiation background

Country	Area	Characteristics of area	Approximate population	Absorbed dose rate in air * (nGy h¹)	Ref.
Brazil	Guarapari Mineas Gerais and Goias Pocos de Caldas Araxá	Monazite sands; coaștal areas Volcanic intrusives	73 000	90-170 (streets) 90-90 000 (beaches) 110-1 300 340 average 2 800 average	[P4, V5] [A17, P4] [V5]
China	Yangjiang Quangdong	Monazite particles	80 000	370 average	[W14]
Egypt	Nile delta	Monazite sands		20-400	[E3]
France	Central region Southwest	Granitic, schistous, sandstone area Uranium minerals	7 000 000	20-400 10-10 000	[J3] [D10]
India	Kerala and Madras Ganges delta	Monazite sands, coastal areas 200 km long, 0.5 km wide	100 000	200-4 000 1 800 average 260-440	[S19, S20] [M13]
Iran (Islamic Rep. of)	Ramsar Mahallat	Spring waters	2 000	70-17 000 800-4 000	[S21] [S58]
Italy	Lazio Campania Orvieto town South Toscana	Volcanic soil	5 100 000 5 600 000 21 000 ~100 000	180 average 200 average 560 average 150-200	[C12] [C12] [C20] [B21]
Niue Island	Pacific	Volcanic soil	4 500	1 100 maximum	[M14]
Switzerland	Tessin, Alps, Jura	Gneiss, verucano, ²²⁶ Ra in karst soils	300 000	100-200	[S51]

Includes cosmic and terrestrial radiation.

Table 31 Average worldwide exposure to natural radiation sources

	Annual effecti	ive dose (mSv)	
Source of exposure	Average	Typical range	
Cosmic radiation Directly ionizing and photon component Neutron component Cosmogenic radionuclides	0.28 (0.30) " 0.10 (0.08) 0.01 (0.01)		
Total cosmic and cosmogenic	0.39	0.3-1.0 6	
External terrestrial radiation Outdoors Indoors	0.07 (0.07) 0.41 (0.39)		
Total external terrestrial radiation	0.48	0.3-0.6	
Inhalation exposure Uranium and thorium series Radon (²²² Rn) Thoron (²²⁰ Rn)	0.006 (0.01) 1.15 (1.2) 0.10 (0.07)		
Total inhalation exposure	1.26	0.2-10 d	
Ingestion exposure *** Uranium and thorium series	0.17 (0.17) 0.12 (0.06)		
Total ingestion exposure	0.29	0.2-0.8 *	
Total	2.4	1-10	

Result of previous assessment [U3] in parentheses.
 Range from sea level to high ground elevation.
 Depending on radionuclide composition of soil and building materials.
 Depending on indoor accumulation of radon gas.
 Depending on radionuclide composition of foods and drinking water.

Uranium/Radium—(4n+2)—series

Isotope	Half-life	α-energies MeV	β-energies MeV	γ-energies MeV	IC
Jranium-238	4·5 × 10° y	~4.2 - 100%		0-048 - 0%	23%
Thorium-234 (UX ₁)	24·1 d	_	0·10 — 35% 0·19 — 65%	0-029 0-063 0-091	$ \begin{array}{l} \alpha - 10 \\ \alpha - 0.2 \\ \alpha - 2.5 \end{array} $
Protactinium-234m (UX ₂)	1-18 m	-	1T — 1% 0·58 —~ 1% 1·50 —~ 9% 2·31 —~90%	0-75 most abundant others	- 1
Protactinium-234 (UZ)	6-66 h	-	1-13 others	0-043 0-80 others	-
Uranium-234 (U II)	2.5 × 10 ⁵ y	4·717 — 28% 4·768 — 72%	-	0-051 - 0%	28%
Thorium-230 (Ionium)	8·0 × 10 ⁴ y	4·615 — 24% 4·682 — 76%	÷	0-068 — 0-6% others —very weak	23-4%
Radium-226	1620 y	4·589 — 5·7% 4·777 — 94·3%	-	0-188 - ~4%	~2%
Radon-222	3-825 d	5.48 -~ 100%	-		:
Polonium-218 (Radium A)	3-05 m	6-00 -~100%	? - 0.02%	- , .	-
Astatine-218	1·3 s	6·70 —~0·02% 6·65 —~0·001%	? —very weak	-	_
Radon-218	1.9 × 10-2s	7-13 — very weak	_	0.61 —very weak	_
Lead-214 (Radium B)	26·8 m		0.59 —~56% 0.65 —~44%	0-24 0-30 0-35 others — weak	-
Bismuth-214 (Radium C)	19-9 m	~5.5 — 0.04%	1.04 — 9% 1.0 — 23% 1.51 — 40% 1.88 — 9% 3.26 — 19%	0-61 most 77 1-12 abundant /27 1-76 14 others to 2-43 MeV	<u>=</u>
Polonium-214 (Radium C')	1.6 × 10-4 s	7-68 — ~100%	-	· · ·	
Thallium-210 (Radium C')	1-3 m	_	1.96 — 0.04%	several —very weak	-
Lead-210 (Radium D)	22 y	-	0·017 — 85 % 0·063 — 15 %	0-047 - ~5%	~ 80%
Bismuth-210 (Radium E)	5-01 d	5-06 -1-7 × 10-4%	1.17 =~100%	<u>=</u>	<u>=</u>
Polonium-210 (Radium F)	138-4 d	5-305 — ~100%		0.8 -1.2 × 10 ⁻³ %	-
Thallium-206 (Radium E')	4·2 m	-	1·51-1·7×10-4%	6	-
Lead-206	Stable	_	_	_	T -