H. Lettner / Physik

Nuclear Fue Cylce

Einzelne Stufen des "Cycles"

- Aktivitätbilanz

- Zeitbilanz

- Massenbilanz

Nuclear – Fuel Cylce: Von der Urangewinnung bis zur Endlagerung

NUCLEAR FUEL CYCLE

les effluents

Nuclear – Fuel Cylce

FIGURE 6. Basic elements and options within the nuclear fuel cycle, showing the kinds of materials that can be released to the environment.

Table 2 PRIMARY DECAY SCHEMES OF ²³⁸U and ²³²Th

~~~	Uranium-238		Thorium-232		
Radionuclide	Half-life	Radiation	Radionuclide	Half-life	Radiation
238[]	4.5 × 10° vear	α.γ	232Th	1.4 × 1010 year	α,γ
234Th	24 day	B.Y	228Ra	6.7 year	B,Y
234Pa	1.2 min	B.Y	228 AC	6.1 hr	B,Y
234[]	2.5 × 10 ⁵ year	a.y	228Th	1.9 year	α,γ
230Th	8 × 10 ⁴ vear	a.y	224Ra	3.6 day	α,γ
226 R a	1620 year	a.y	220Rn	55 sec	α,γ
222 R n	3.8 day	<i>a.y</i>	216Po*	0.16 sec	α,β
218P.04	3.1 min	a.B	212Pb	11 hr	B.Y
214Ph	27 min	B.Y	212Bi*	61 min	α,β,γ
214 Bie	20 min	a.B.y	212Po	3 × 10-' sec	a
214Po	$1.6 \times 10^{-4}$ sec	a	208Pb	Stable	None
210Pb	19 year	B,Y			
210Bi*	5.0 day	α,β,γ			
210Po	138 day	a.y			
206 Pb	Stable	None			

#### MATERIAL AND RADIOLOGICAL BALANCES OF THE NUCLEAR FUEL CYCLE

The figures in the following *mass balance* are taken from (3). They are normalized to the annual consumption of a 1 GWe-NPP and reflect average industrial practice as concerns ore grade and tail assay.

MASS BALAN	CE
Mining	440.000 t of rock $\rightarrow$ 40.000 t usable ore + 400.000 t discarded low grade ore.
Milling	40.000 t ore $ ightarrow$ 400 t yellow cake + 39.600 t tailings
Conversion	400 t yellow cake – 220 t UF6 + 180 t waste
Enrichment	220 t UF6 $\rightarrow$ 33 t enriched uranium + 187 t depleted uranium.
Fuel fabrication:	33 t enriched uranium $ ightarrow$ 33 t fuel + some LLW
Reactor	33 t fuel $\rightarrow$ 33 t spent fuel + low- and intermediate-level waste. According to the IAEA (4), a NPP produces 6.000 - 40.000 m ³ of LILW in 25 years. The decommissioning waste is estimated to 7.000 - 17.000 m ³ ("230 truckloads a year for 6 years").
Reprocessing	33 t spent fuel -> 31.5 t uranium+0.3 t plutonium +1.2 t fission products and actinides (5) + effluents + LILW

Currently a major problem is storage capacity for all sorts of wastes since disposal is not available at all for HLW and not available in necessary quantity for LILW. During 1990 alone, 10.000 t of spent fuel have been produced. The cumulated total was 115.000 t but the reprocessing capacity was only 4100 t uranium/year (for LWR fuel: 1800) in 1990. Thus the so far cumulated amount of spent fuel equals 20 years of reprocessing (6).

(3) J. Stellpflug: Der weltweite Atomtransport. Greenpeace report 2, rororo aktuell Hamburg 1987

(4) IAEA News feature N.6, 1990

(5) DWK 1985. A burn-up of 33 GWd/t is anticipated.

(6) IAEA yearbook 1991 part C

# 440.000 t ore $\rightarrow$ 33 t fuel

The *activity balance* looks quite different. During fission in the reactor, large quantities of radioactive fission and activation products are generated, some of which are very long-lived. The activities are the ones corresponding to the above quoted masses.

ACTIVITY BAL	ANCE (Activities produced per 1 GWe-NPP)
Mining:	10 PBq uranium (+ same activity of each progeny) in rock $ ightarrow$ 5.2 PBq ore + 5 PBq discarded low grade ore
Milling:	5.2 PBq uranium (+ same act. in each progeny) in ore $\rightarrow$ 5.2 PBq uranium in yellow cake + 5.2 PBq in tailings (in each Th-230, Ra-226 an so on).
Conversion:	5.2 PBq uranium in yellow cake $\rightarrow$ 2.9 PBq in UF6 + 2.3 PBq in waste
Enrichment:	2.9 PBq UF6 $\rightarrow$ 0.48 PBq enriched UF6 + 2.4 PBq depleted UF6
Fuel fabrication:	0.48 PBq enriched UF6 $\rightarrow$ 0.48 PBq fuel elements.
Reactor:	0.48 PBq $\rightarrow$ 2.2 10 ⁸ PBq fission products and actinides (7) + LILW + effluents (very different)
Interim storage of s	pent fuel, 7 years: in spent fuel 2.2 $10^8$ PBq $\rightarrow 3.7$ $10^5$ PBq
Reprocessing	3.7 $10^5$ PBq in spent fuel $\rightarrow$ around $10^5$ PBq in plutonium + 2.7 $10^5$ PBq in fission products and actinides + LILW + effluents (very different)

## 10 PBq Uranium $\rightarrow 2.2 \, 10^8$ PBq in waste

Reactor operation increases the radioactivity by a factor almost half a billion. After 7 years of radioactive decay the radioactivity is still almost I million times higher than in the initial uranium ore. In the so-called *fuel cycle* a huge and costly amount of radioactive waste is produced

TIME BALANCE (roughly)
Reactor construction: 10 years
Reactor Operation: 30 years
Period between shut-down and decommissioning: > 5 years
Decommissioning: 5 – 10 years
Interim storage of spent fuel before reprocessing: > 5 years
Interim storage of spent fuel before direct disposal: ?
Interim storage of reprocessing waste before disposal: ?
Isolation time of high-level waste: some 100.000 years
Isolation time of uranium mill tailings:some 100.000 years

An Isolation period of some 100.000 years is needed for the wastes produced during a lifetime of reactor operation.

(7) Inventory after 29.7 GWd/t burn-up according to: NG350 Marburg, Gruppe Ökologie Hannover: Bericht Wiederaufarbeitung 1, 1982