
Implementing a distributed TDL-EMachine for
the RTLinux Platform

Klemens Winkler

University of Salzburg
Institute for Computer Science

5020 Salzburg, Austria

July 22, 2004

Contents

Overview
Introduction
Extending the TDL Compiler
Implementing a TDL EMachine for RTLinux

Registration Service
ECode Parser
Scheduler
Dispatcher

Software Bus
Example with two nodes

Expected Completion Date

About this document ...

Overview

Introduction
The main goal of my diploma thesis is implementing a TDL-EMachine to aid the development of
distributed, real-time systems for the RTLinux Platform. RTLinux provides the necessary real-time
functionality needed by most applications. The main steps will be:

1. Extending the TDL Compiler to generate RTLinux specific Code.
2. Implementing a full functional TDL EMachine on RTLinux.
3. Implementing a global data pool, to share variables among different nodes over the network.

The next sections will describe above steps in more detail.

Extending the TDL Compiler
In order to understand the need of extending the TDL compiler we need to take a closer look at the
TDL Tool Chain. First of all the user needs to provide a program describing the timing behavior of
the system, called TDL-Program. This program is the input for the TDL-Compiler, which generates
platform independent ECode (binary code) and platform dependent Glue Code (needed as a link

between Functionality Code and EMachine during system execution). Nothing magical about the
next steps. The Glue Code and Functionality Code are compiled and linked together. On the
RTLinux Platform the resulting object file is a Linux-Kernel Module. The Kernel Module with the
corresponding ECode file are called Partition. As you might have guessed, we need to extend the
TDL Compiler to produce the RTLinux specific Glue Code in order to get a Kernel Module.

Implementing a TDL EMachine for RTLinux
The TDL-EMachine is a Kernel Module itself. As you can see in Figure1.1 it gets the ECode
(discribing the timing behavior) and Functionality Code as input in order to execute the TDL-
Program. The TDL-EMachine is able to execute more than one partition in parallel, as long as all
timing constraints can be met. This is achieved by partitioning. Each module gets as much CPU as
needed in the worst case. The main components of the TDL-EMachine are:

Registration Service

Figure 1.1: Tool Chain

ECode Parser
Scheduler
Dispatcher

The next subsections will describe above steps in more detail.

Registration Service
Each Partition registers itself at the registration service provided by the TDL-EMachine. This
mechanism is needed in order to load Partitions at runtime and notify the TDL-EMachine, that it
needs to take care of one more Partition. If the new Partition needs more CPU time than available,
the Partition is rejected by the TDL-EMachine. The process mainly uses standard Linux concepts
(system calls) and passes pointers to functionality code to the TDL-EMachine. Figure1.2 shows the
described process.

ECode Parser
Since it is not good practice to access I/O directly from real time programs, RTLinux provides a
mechanism called Real Time Fifos. A user space Program reads the ECode file from hard disc and
puts it into a designated Real Time Fifo. After the whole file is read the ECode Parser, running in
kernel space, parses the byte stream and builds all the internal data structures needed in order to
execute the program.

Scheduler
After a partition is loaded (Functionality Code is registered and ECode File is parsed) a EDF
schedule is calculated for each partition. This schedule is needed by the dispatcher.

Dispatcher
The dispatcher is responsible for time partitioning and meeting deadlines calculated by the scheduler.
These calculations need to be done dynamically since we do not know how many partitions will get

Figure 1.2: Registration Service

loaded during program execution.

Software Bus
A challenging part will be designing and implementing a protocol, which supports global data
sharing among all nodes in the system. This protocol is called Software Bus and is under design right
now. In order to meet real-time constraints the Software Bus needs to rely on a predictable and
reliable Protocol (in time and value domain) it is based on. I have chosen a TT-Ethernet
implementation written by Walter Egger.

Example with two nodes
The following example shows the hierarchy of the components and the communication path through
them. For the developer of a real-time application the communication between RTThreads
(Application Threads) is transparent. The system has to guarantee, that the correct value is available
at the right time. Whereas the physical communication path depicts the actual method messages are
transmitted.

Expected Completion Date
October 2004

About this document ...

Figure 1.3: SWBus

Implementing a distributed TDL-EMachine for the RTLinux Platform

This document was generated using the LaTeX2HTML translator Version 2K.1beta (1.48)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of
Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University,
Sydney.

The command line arguments were:
latex2html -no_navigation -local_icons -split 0 Dipl_�ersicht.tex

The translation was initiated by Klemens Matthias Winkler on 2004-07-22

Klemens Matthias Winkler 2004-07-22

