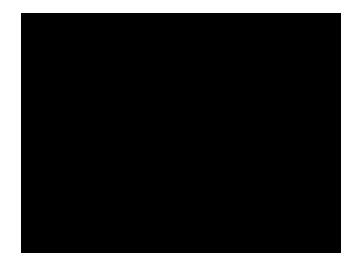
Embedded and Cyber-Physical Systems

- Introduction -

What software can do

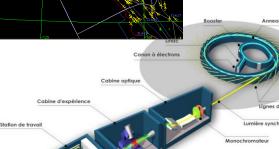


Cyber-Physical Systems (CPS):

Orchestrating networked computational resources with physical systems

Building Systems

Avionics Telecommunications Transportation (Air traffic control at SFO)

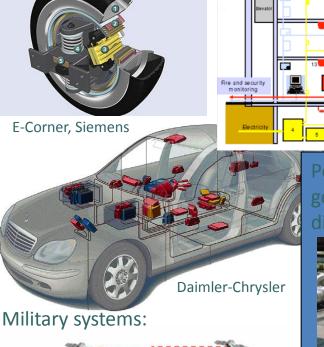


Instrumentation (Soleil Synchrotron)

Factory automation

Courtesy of Kuka Robotics Corp.

Slide from Lee & Seshia



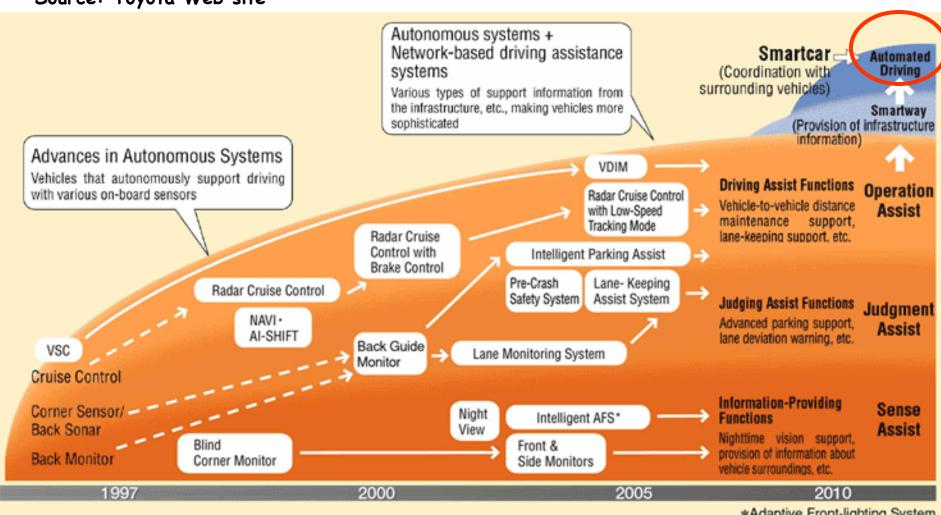
Automotive

ourtesy of D

6 **G**7

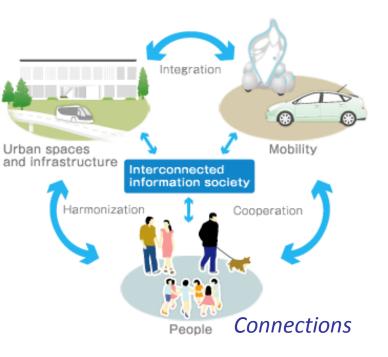
Example: Toyota autonomous vehicle technology roadmap, c. 2007

Source: Toyota Web site

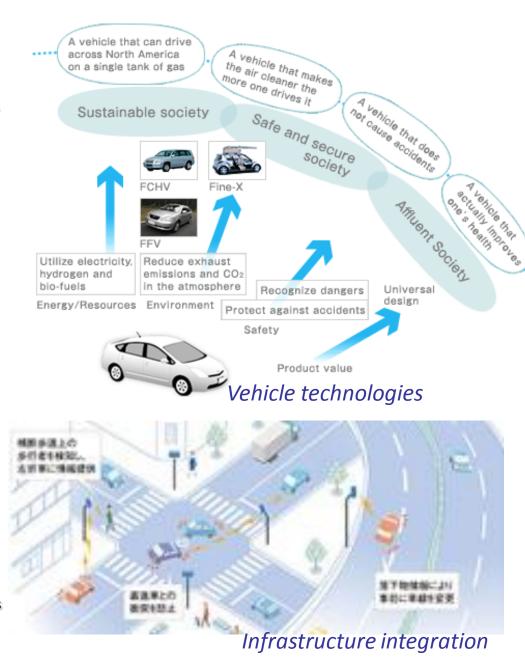


Toyota's Direction

Our sustainable mobility strategy includes products, partnerships, the urban environment and energy solutions.*



*Toyota 2010 North American Environmental Report Highlights



How can we deal with such complex systems?

Modeling, Design, Analysis

- Modeling is the process of gaining a deeper understanding of a system through imitation.
 Models specify what a system does.
- •Design is the structured creation of artifacts. It specifies how a system does what it does. This includes optimization.
- •Analysis is the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does (or fails to do what a model says it should do).

What is Modeling?

•Developing insight about a system, process, or artifact through imitation.

•A *model* is the artifact that imitates the system, process, or artifact of interest.

•A mathematical model is model in the form of a set of definitions and mathematical formulas.

What is Model-Based Design?

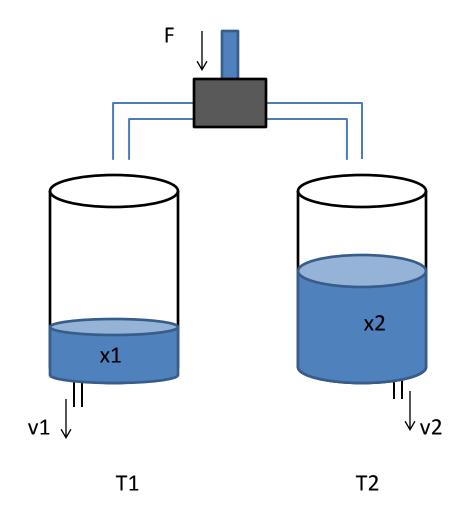
- Create a model of all the parts of the embedded system
 - Physical world
 - Control system
 - Software environment
 - Hardware platform
 - Network
 - Sensors and actuators
- 2. Construct the implementation from the model
 - Construction may be automated, like a compiler
 - More commonly, portions are automatically constructed

Modeling Techniques

- Models that are abstractions of system dynamics (how things change over time)
- Examples:
- Modeling physical phenomena ODEs
- Feedback control systems time-domain modeling
- Modeling modal behavior FSMs, hybrid automata
- Modeling sensors and actuators calibration, noise
- Modeling software concurrency, real-time models
- Modeling networks latencies, error rates, packet loss

Modeling of continuous dynamics

The two-tank example revisited



A mathematical model

$$(1) \begin{cases} \dot{x}_1 = F - v_1 \\ \dot{x}_2 = -v_2 \end{cases}$$

$$(2) \begin{cases} \dot{x}_1 = -v_1 \\ \dot{x}_2 = F - v_2 \end{cases}$$

Solution

$$\begin{cases} x_1(t) = x_1^0 + (F - v_1) \cdot \Delta t_1 + (-v_1) \cdot \Delta t_2 \\ x_2(t) = x_2^0 + (-v_2) \cdot \Delta t_1 + (F - v_2) \cdot \Delta t_2 \end{cases}$$

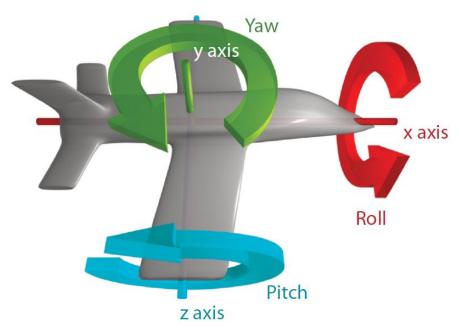
Does a viable controller exist? Check this:

$$\begin{cases} (F - v_1) \cdot \Delta t_1 + (-v_1) \cdot \Delta t_2 \ge 0 \\ (-v_2) \cdot \Delta t_1 + (F - v_2) \cdot \Delta t_2 \ge 0 \end{cases}$$

An Example: Modeling Helicopter Dynamics

Modeling Physical Motion

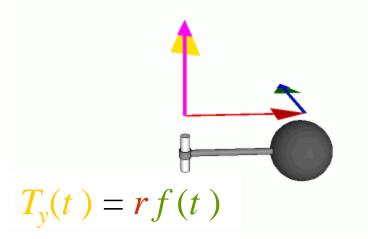
- Six degrees of freedom:
- Position: x, y, z
- Orientation: pitch, yaw, roll



Torque

For a point mass rotating around a fixed axis:

- radius of the arm: $r \in \mathbb{R}$
- force orthogonal to arm: $f \in \mathbb{R}$
- mass of the object: $m \in \mathbb{R}$



angular momentum, momentum

- •Just as force is a push or a pull, a torque is a twist.
- •Units: newton-meters/radian, Joules/radian
- •Note that radians are meters/meter (2π meters of circumference per 1 meter of radius), so as units, are optional.

17

Rotational Version of Newton's Second Law

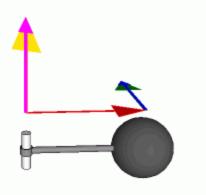
$$\mathbf{T}(t) = \frac{d}{dt} \left(I(t)\dot{\theta}(t) \right),\,$$

where I(t) is a 3×3 matrix called the moment of inertia tensor.

$$\begin{bmatrix} T_x(t) \\ T_y(t) \\ T_z(t) \end{bmatrix} = \frac{d}{dt} \begin{pmatrix} \begin{bmatrix} I_{xx}(t) & I_{xy}(t) & I_{xz}(t) \\ I_{yx}(t) & I_{yy}(t) & I_{yz}(t) \\ I_{zx}(t) & I_{zy}(t) & I_{zz}(t) \end{bmatrix} \begin{bmatrix} \dot{\theta}_x(t) \\ \dot{\theta}_y(t) \\ \dot{\theta}_z(t) \end{bmatrix} \end{pmatrix}$$

Here, for example, $T_y(t)$ is the net torque around the y axis (which would cause changes in yaw), $I_{yx}(t)$ is the inertia that determines how acceleration around the x axis is related to torque around the y axis.

Simple Example



Yaw dynamics:

$$T_y(t) = I_{yy}\ddot{\theta}_y(t)$$

To account for initial angular velocity, write as

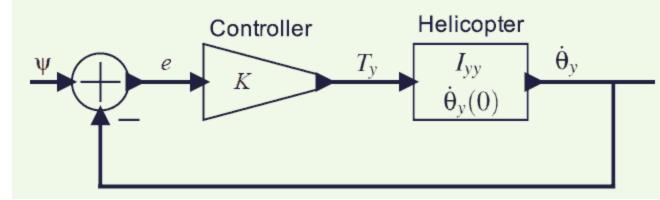
$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau.$$

Feedback Control Problem

A helicopter without a tail rotor, like the one below, will spin uncontrollably due to the torque induced by friction in the rotor shaft.

Control system problem:
Apply torque using the tail rotor to counterbalance the torque of the top rotor.

Behavior of the controller



$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{K}{I_{yy}} \int_0^t (\psi(\tau) - \dot{\theta}_y(\tau)) d\tau$$

Assume that helicopter is initially acress,

$$\dot{\theta}(0) = 0,$$

and that the desired signal is

$$\psi(t) = au(t)$$

for some constant a.

By calculus (see notes), the solution is

$$\dot{\theta}_y(t) = au(t)(1 - e^{-Kt/I_{yy}})$$