Embedded and Cyber-Physical Systems

- Modeling discrete behavior -

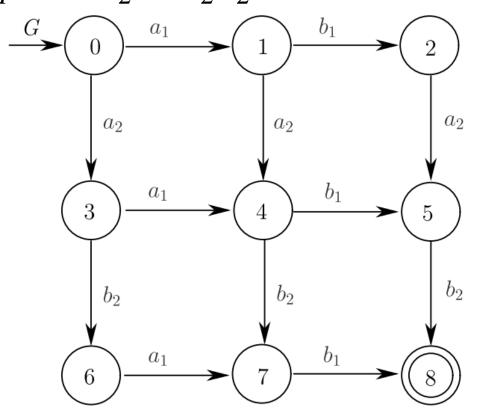
<u>Reference book:</u> Christos G. Cassandras and Stéphane Lafortune, *Introduction to Discrete Event Systems*, Second Edition, Springer, ISBN: 978-0-387-33332-8, 2008.

Classic DES control example: Database concurrency

- Read/write events
- Transaction: a sequence of events from the same user
- Schedule: interleaving of events from different (concurrent) transactions
- Control problem:
 - Allow only admissible schedules
 - Allow as many admissible schedules as possible

Database concurrency example

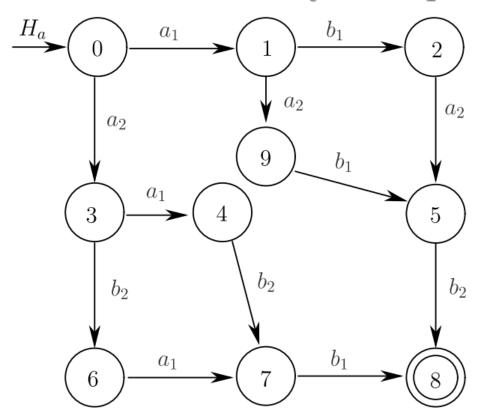
• Uncontrolled behavior for two transactions $T_1 = a_1b_1$ and $T_2 = a_2b_2$:



Model of the admissible behavior

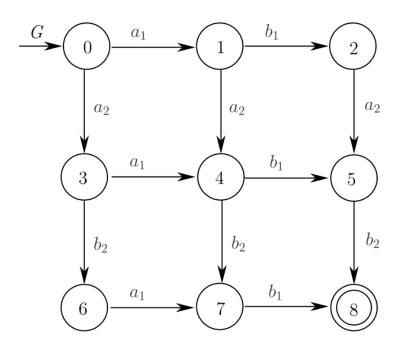
Ordering constraint

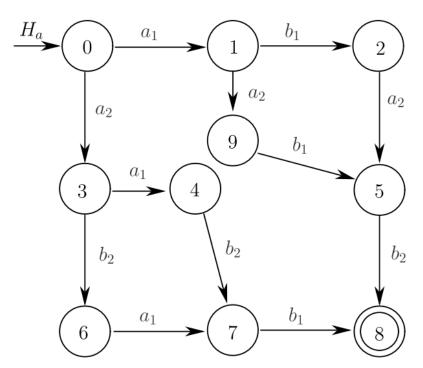
 a_1 precedes a_2 if and only if b_1 precedes b_2



All events are controllable and observable

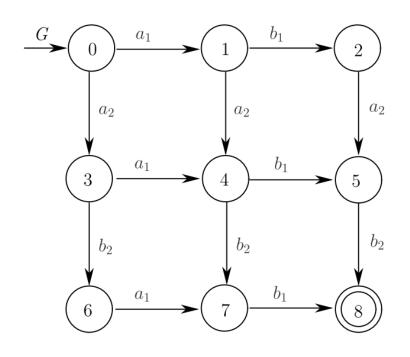
- Supervisor S_I uses H_a
- Every event executed by G causes the same event in \mathcal{H}_a
- When H_a enters state 4, S_I disables event b_I
- When H_a enters state 9, S_1 disables event b_2

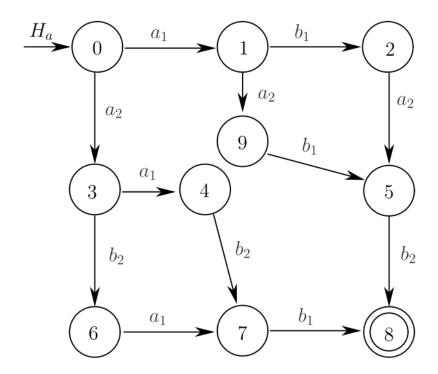




The effect of uncontrollable events

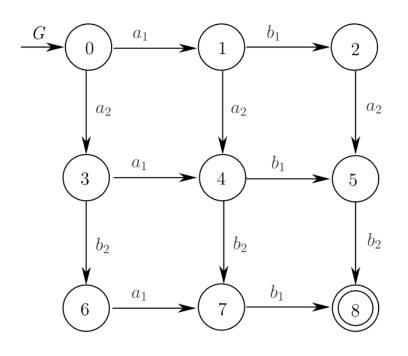
• Let's assume a_2 and b_2 are uncontrollable

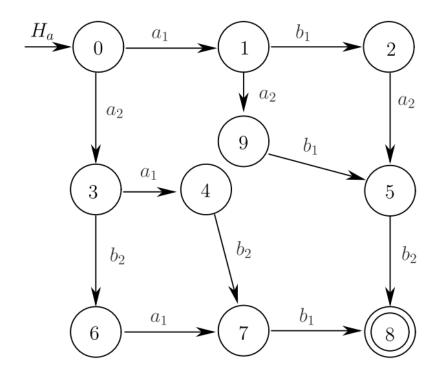




The effect of unobservable events

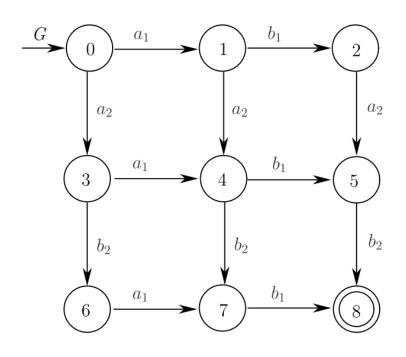
• Let's assume a_2 is unobservable

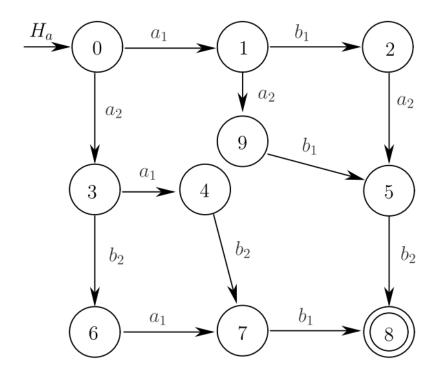




Unobservable and uncontrollable events

• Event a_2 is unobservable





The Controllability Theorem

- $G = (X, E, f, \Gamma, x_0)$ with $E_{uc} \subseteq E$
- $K \subseteq \mathcal{L}(G)$, where $K \neq \emptyset$.

• There exists supervisor S such that $\mathcal{L}(S/G) = K$ if and only if

$$\overline{K}E_{uc} \cap \mathcal{L}(G) \subseteq \overline{K}$$

Checking Controllability

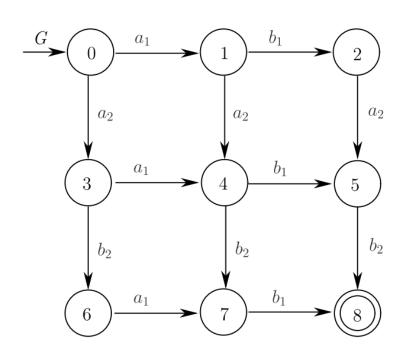
- If H is an automaton that generates \overline{K}
- K is controllable with respect to $\mathcal{L}(G)$ and E_{uc} if and only if

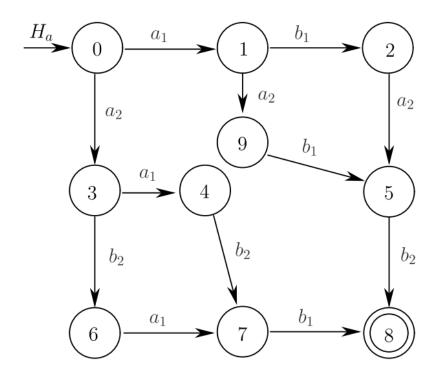
$$\forall x \in X_{H \times G}, x = (x_H, x_G), \forall e \in E_{uc} \cap \Gamma(x_G) \Rightarrow e \in \Gamma(x)$$

 What is the worst-case computational complexity of this test?

Example of controllability check

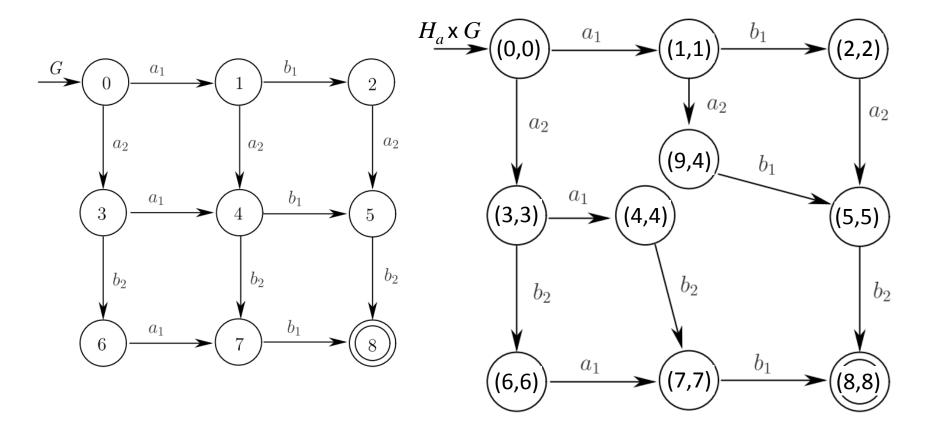
• Is $K = \mathcal{L}_m(H_a)$ controllable?





Example of controllability check

• Yes, if b_1 and b_2 are controllable

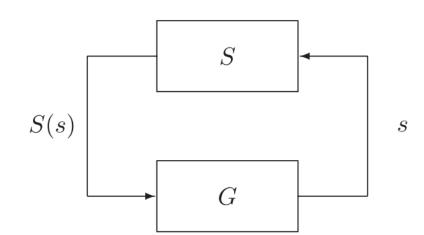


Realization of supervisors

• Let $R := (Y, E, g, \Gamma_R, y_0, Y)$ such that

$$\mathcal{L}_m(R) = \mathcal{L}(R) = \overline{K}$$

• Then $R/\!/G$ represents the behavior of the closed-loop system S/G



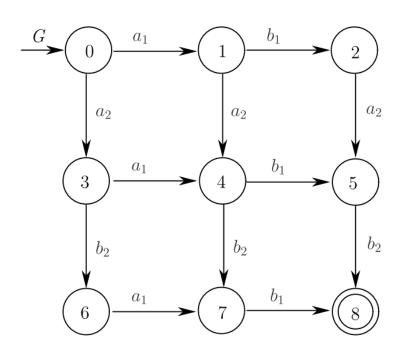
$$S(s) = [E_{uc} \cap \Gamma(f(x_0, s))] \cup \{\sigma \in E_c : s\sigma \in \overline{K}\}$$

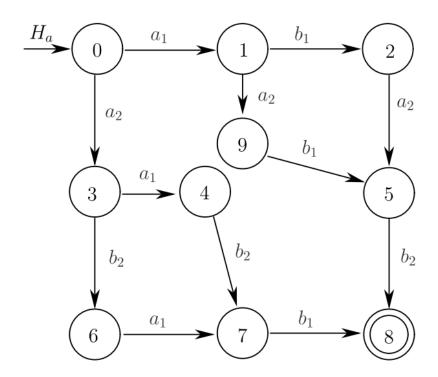
$$= \Gamma_R(g(y_0, s))$$

$$= \Gamma_{R||G}(g||f((y_0, x_0), s))$$

What if *K* is not controllable?

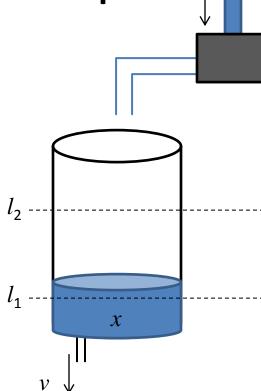
- Supremal controllable sublanguage
- Example: $K = \mathcal{L}_m(H_a)$ and $E_{uc} = \{a_2, b_2\}$





DES model for the tank example F

- Variable outflow
- A 2-speed pump
- Level between l1 and l2
- Minimize load on external supply
- Maximal input flow greater than maximal output flow
- Safety specification: tank should not be empty
- Design a supervisor for this system!



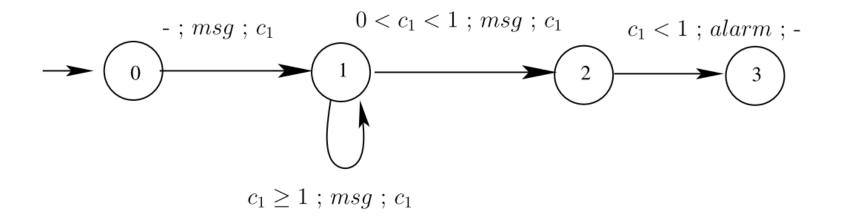
Timed automata with guards

- An automaton with an associated set of clocks
- A clock is a continuous variable $c_i(t)$ with

$$\frac{d}{dt}c_i(t) = 1$$

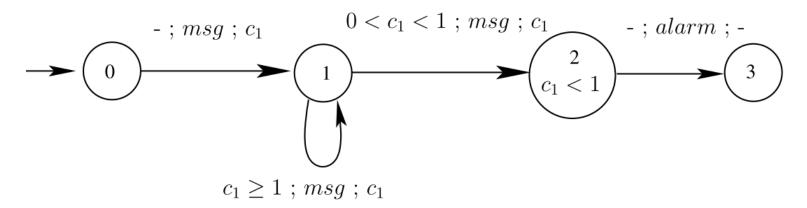
- A transition has the form (guard; event; reset)
 - guard specifies a timing precondition for the transition to occur
 - event is generated when the transition occurs
 - reset indicates which clock variables are reset to zero upon executing the transition

Example of timed automaton



- As long as a msg event is generated more than one time unit after the previous msg event, then another msg event can occur.
- When a *msg* event occurs less than one time unit after the previous *msg* event, then the *alarm* event is generated within the next time unit and the system stops.
- What if *alarm* is not generated "in time" at state 2?

Timed automata with guards and invariants

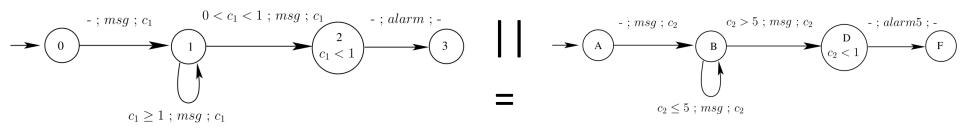


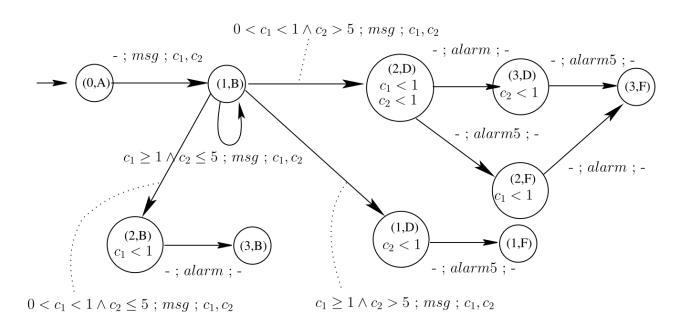
- The system must leave state 2 before the value of $c_1(t)$ reaches 1
- Each state must have at least one outgoing transition whose guard has a non-empty intersection with the state invariant

Timed automata model for the tank example

- Variable outflow
- A 2-speed pump
- Level between l1 and l2
- Minimize load on external supply
- Maximal input flow greater than maximal output flow
- Safety specification: tank should not be empty

Parallel composition of timed automata





Hybrid automata

- Extensions of timed automata where the simple clock dynamics are replaced by arbitrary time-driven dynamics
- Example: the two-tank system from the introduction lecture

