

Gastvortrag

Montag, 20. April 2015 13.15 Uhr Seminarraum II

Dr. Shanta Laishram ISI Delhi

Powers in products of terms of Recurrence Sequences

Abstrakt:

It is known that there are only finitely many perfect powers in non degenerate binary recurrence sequences. However explicitly finding them is an interesting and a difficult problem for a number of binary recurrence sequences. A recent breakthrough result of Bugeaud, Mignotte and Siksek states that Fibonacci sequences $(F_n)_{n\geq 0}$ given by $F_0=0$, $F_1=1$ and $F_{n+2}=F_n+F_{n+1}$ and for $n\geq 0$ are perfect powers only for $F_0=0$, $F_1=1$, $F_2=1$, $F_6=8$ and $F_{12}=144$.

In this talk, we consider another well known Pell and Pell-Lucas sequence. The Pell sequence $(u_n)_{n=0}^\infty$ is given by the recurrence $u_n=2u_{n-1}+u_{n-2}$ with initial condition $u_0=0,u_1=1$ and its associated Pell-Lucas sequences $(v_n)_{n=0}^\infty$ is given by the recurrence $v_n=2v_{n-1}+v_{n-2}$ with initial condition $v_0=2,v_1=2$.

Let n,d,k,y,m be positive integers with $m \geq 2$, $y \geq 2$ and $\gcd(n,d) = 1$. We prove that the only solutions of the Diophantine equation $u_n u_{n+d} \cdots u_{n+(k-1)d} = y^m$ are given by $u_7 = 13^2$ and $u_1 u_7 = 13^2$ and the equation $v_n v_{n+d} \cdots v_{n+(k-1)d} = y^m$ has no solution. In fact we prove a more general result. This is a joint work with Bravo, Das and Guzman. I will also talk about some related results on joint work with Maibam and Ngairangbam.

Einladender: Clemens Fuchs