Introduction
Benchmarks and Analysis
Application Benchmarks
Conclusion
References

HPC In The Cloud?

Michael Kleber

Department of Computer Sciences University of Salzburg, Austria

July 2, 2012

Content

- Introduction
- Benchmarks and Analysis
 - Benchmarks
 - Cost Analysis
- Application Benchmarks
 - MUSCLE
 - NASA
- Conclusion
- 6 References

Motivation

- wide spread availability of cloud services
- easy access to compute resources
- easy to scale
- pay-as-you-go

Questions

- Performance?
- suitable for every HPC application?
- shortcomings and problems?
- cost-effective?

Introduction

Benchmarks and Analysis Application Benchmarks Conclusion References

Cloud Amazon

Amazon EC2

- well known
- available to everyone
- CCI targets HPC user

Cloud

- virtualisation
- processor type per instance is not specified
- performance (CU) and Memory are specified
- 1GbE or 10GbE (CCI)
- (real) network capacity, quality and topology are not known

HPC Cluster

- no virtualisation
- processor type and Memory ar known
- InfiniBand, HT-Link or ethernet (1Gb oder 10Gb)
- several network topologies, e.g. 2D-mesh
- (real) capacity and quality are known

Outline

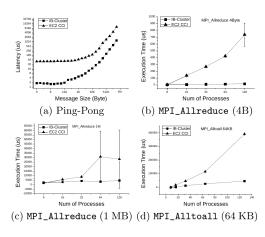
- 1 Introduction
- Benchmarks and Analysis
 - Benchmarks
 - Cost Analysis
- Application Benchmarks
 - MUSCLE
 - NASA
- Conclusion
- 6 References

Overview

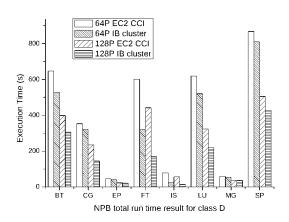
- EC2 CCI versus local cluster [1]
- "synthetic benchmarks"
- network performance
- compute performance
- parallel I/O
- performance variation
- cost-effective

EC2 CCI Setup

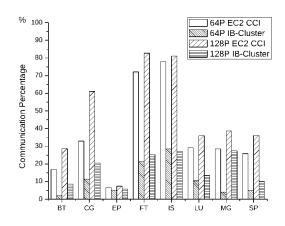
- 2 quad core Xeon X5570, 23GiB RAM
- 10GbE
- per instance LBS 1690 GiB
- EBS + S3
- Amazon Linux 64 Bit
- Intel compiler


Cluster Setup

- six core Xeon 5670, 32 GiB RAM
- QDR InfiniBand
- NFS
- Intel compiler
- similar compute performance

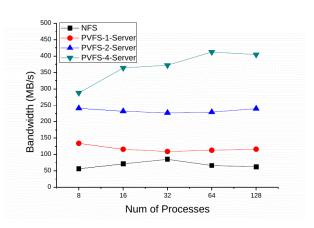

Benchmarks

- Intel MPI
- NBP

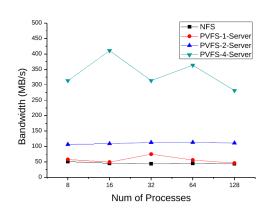

Intel OpenMPI

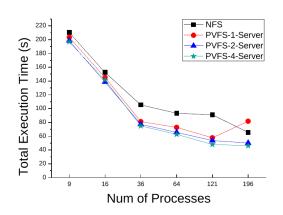
NBP Completion Time

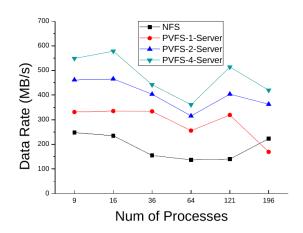
NPB Communication

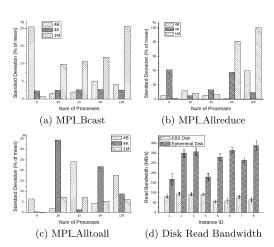


Parallel I/O


- NFS common on small and some mid range clusters, parallel file systems are popular on large clusters
- some parallel file systems are PVFS, GPFS and Lustre
- changing the file system every session is only possible with cloud services
- tested file systems:
 - NFS
 - PVFS
- benchmarks:
 - IOR micro benchmarks
 - BT-IO


Parallel I/O IOR Read Rate


Parallel I/O IOR Write Rate


Parallel I/O BT-IO Completion Time

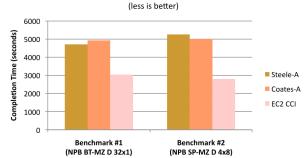
Parallel I/O BT-IO Data Rate

Performance Variation

Outline

- 1 Introduction
- Benchmarks and Analysis
 - Benchmarks
 - Cost Analysis
- Application Benchmarks
 - MUSCLE
 - NASA
- Conclusion
- 6 References

Background


- case study by Perdue [2]
- 2 community cluster
 - Steele: 902 nodes, Xeon E5410, utilisation 68.4%
 - Coates: 993 nodes, Opteron 2380, utilisation 80.1%
- Amazon EC2 CCI: 1.6\$ per node hour + storage => ca 1.75\$

Cluster Cost

Resource	Q2 2010 Core-Hours	Nodes Purchased	TCO per Node	EC2 Equivalent / Node-Hour
Steele	10,815,169	902	\$7,643.10	\$0.42
Coates	13,936,475	993	\$8,315.82	\$0.40

Performance

RCAC vs. EC2 CCI Benchmark Timings

Outline

- 1 Introduction
- Benchmarks and Analysis
 - Benchmarks
 - Cost Analysis
- Application Benchmarks
 - MUSCLE
 - NASA
- Conclusion
- 6 References

MUSCLE

- Multi-Scale Simulation MUSCLE [3]
- usage examples:
 - blood flow
 - solid tumor models
 - stellar system
 - virtual reactor

Setup

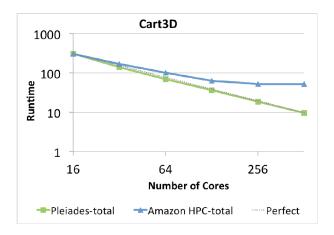
- in-stent restenosis application
- 15 and 150 iterations
- HP cluster platform with 2.26 GHz Xeon processors, InfiniBand
- EC2 high CPU extra large instances including 7 GiB of RAM, 20
 CUs (8 virtual cores) and 1690 GiB of local storage
- EC2 cluster compute quadruple extra large including 23 GiB of RAM, 33.5 CUs and 1690 GiB of local storage

Performance

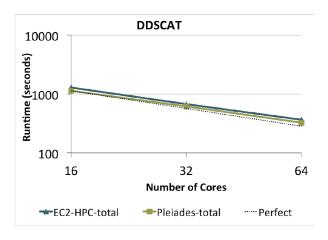
ISR 2D 15 iterations											
Infrastructure	Setting up		Execution		Sending Output		Total				
	min - max (sec)		avg (sec)	σ			min - max (sec)				
Local											
HPC Cluster	6 - 363		190	16	N/A		196 - 553				
	avg(sec)	σ	avg (sec)	σ	avg(sec)	σ	avg(sec)	σ			
AWS Cloud	2000			1		()					
m1.xlarge	81	.6	250	20	100	10	430	20			
m2.4xlarge	80	10	187	: 3	130	20	400	20			
ISR 2D 150 iterations											
Infrastructure	Setting up		Execution		Sending Output		Total				
E	min - max (sec)		Avr (sec)	σ			min - max (sec)				
Local	6 262		1500	120	27/4		1506 - 1863				
HPC Cluster	6 - 363			130	N/A						
52	avg(sec)	σ	avg (sec)	: σ	avg(sec)	σ	avg(sec)	σ			
AWS Cloud	/			111111111			l :	100			
m1.xlarge	72	.4	2068	15	120	20	2260	:30			
m2.4xlarge	74	4	1526	:4	110	60	1710	60			

Outline

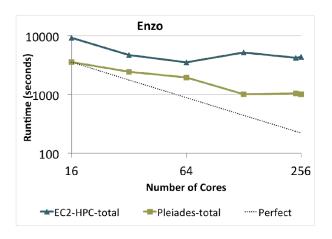
- 1 Introduction
- Benchmarks and Analysis
 - Benchmarks
 - Cost Analysis
- Application Benchmarks
 - MUSCLE
 - NASA
- Conclusion
- 6 References

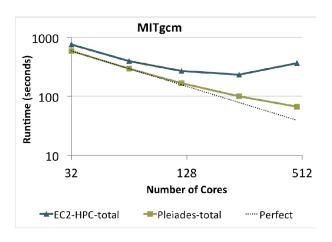

Setup

- NASA Benchmarks [4]
- Amazon EC2 quadruple extra large, NFS, SLES 11, Intel compiler 12.4, OpenMPI 1.4.4
- Pleiades: SGI ICE with Xeon X5570, 24 GiB of RAM, InfiniBand 4XQDR, MPT 2.04, Intel compiler 12.4, Lustre parallel FS


Applications

- 4 real world applications
- Cart3D CFD fluid simulation
- DDSCAT calculates absorption and scattering properties
- Enzo to simulate cosmological structure formation
- MITgen global ocean simulation model


Cart3D


DDSCAT

Enzo

MITgen

Conclusion

- good suited for tigthly coupled application
- high variance
- comparable costs
- easy to setup, low maintanance
- easy to switch filesystems
- no waiting time

Reference

- 1 Cloud Versus In-house Cluster: Evaluating Amazon Cluster Compute Instances for Running MPI Applications
- 2 Cost-effective HPC: The Community or the Cloud?
- 3 Comparison of Cloud and Local HPC approach for MUSCLE-based Multiscale Simulations
- 4 Performance Evaluation of Amazon EC2 for NASA HPC Applications