
1

Software Engineering

Software Architecture
for

Enterprise Information Systems

Guido Menkhaus and Emilia Coste
Software Research Lab, University of Salzburg

2

References

References
– Floyd Marinescu, EJB Design Patterns, John Wiley & Son,

2002
– E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design ,

Design Patterns, Addison Wesley, 1995
– Sun, J2EE Patterns Catalog,

http://java.sun.com/blueprints/patterns/catalog.html

– Leszek A. Maciaszek, Data Management in Designing
Enterprise Information Systems,
http://www.comp.mq.edu.au/~leszek/ind_courses/

2

3

Overview

• Model - View - Controller

• Design Objectives

• Enterprise Information System Multi-
Tier Architecture

• Design Principles

• Design Patterns

• Software Metrics

4

MVC

3

5

Design Objectives

• A hierarchical layering / tiering of
software modules that
– reduces complexity and

– enhances understandability of module
dependencies

by disallowing direct object
intercommunication between non-
neighboring layers / tiers.

6

Design Objectives revisited

• Architectural design is an exercise in
managing module dependencies
– Module A depends on module B if changes to module

B may necessitate changes to module A (�Open-
Close Principle)

• It is important that dependencies do not
cross dependency firewalls
– In particular, dependencies should not propagate

across non-neighboring layers / tiers and must not
create cycles

4

7

EIS Multi-Tier Architecture

Presentation Control
Business

Logic
Meditor Foundation

Entity

8

Multi-Tier Application Explained I

• Presentation
– Classes that define UI objects. The presentation renders the

contents of the application.
• Control

– The controller translates interactions with the presentation
into actions to be performed by the application logic.

– In a stand-alone GUI client, user interactions could be button
clicks or menu selections, whereas in a Web application,
they appear as GET and POST HTTP requests.

– The actions performed include activating business
processes. Based on the user interactions and the outcome
of the model actions, the controller responds by selecting an
appropriate view.

5

9

Multi-Tier Application Explained II

• Application Logic
– The application logic represents the business rules that govern

access to and updates of the data. Often the application logic
serves as a software approximation to a real-world process, so
simple real-world modeling techniques apply when defining the
application logic.

• Mediator
– Creates a level of independence between entity and foundation

and between application logic and foundation
• Entity

– Classes representing „business objects“
• Foundation

– Responsible for all communication with the persistent data
store

10

Principles

• Downward (left-to-right) Dependency

• Upward (right-to-left) Notification

• Neighbor Communication

• Cycle Elimination

• Class Naming

6

11

Front Controler

• The Front Controller pattern defines a single component that is
responsible for processing application requests.

• A front controller centralizes functions such as vie w selection,
security, and templating, and applies them consiste ntly across
all pages or views. Consequently, when the behavior of these
functions need to change, only a small part of the application
needs to be changed: the controller and its helper classes.

P C BL M F

E

12

Business Delegate

• In distributed applications, lookup and exception h andling for
remote business components can be complex. When
applications use business components directly, appl ication
code must change to reflect changes in business com ponent
APIs.

• How can an intermediary between the presentation and the
business logic be created to facilitate decoupling the
presentation from the application logic tier ?

P C BL M F

E

7

13

Observer

• Abstract coupling between Subject and Observer.
– All a subject knows is that it has a list of observers, each

conforming to the simple interface of the abstract Observer
class. The subject doesn't know the concrete class of any
observer. Thus the coupling between subjects and observers is
abstract and minimal.

• Unexpected updates.
– Because observers have no knowledge of each other's

presence, they can be blind to the ultimate cost of changing the
subject. A seemingly innocuous operation on the subject may
cause a cascade of updates to observers and their dependent
objects. Moreover, dependency criteria that aren't well-defined
or maintained usually lead to spurious updates, which can be
hard to track down.

P C BL M F

E

14

Observer
Variation I

• If both Components are Provider and Observer at the
same time, they are mutual Provider and Observer for
each other.

• Mutual Provider / Observer behavioral patterns
require attention in implementation to prevent livelock
runtime conditions.

P C BL M F

E

8

15

Observer
Variation II
• A is state dependent on B and B is state dependent

on A.
• There is a cycle in the dependency graph. In this case

the Observer pattern is not helpful. The application
might hang, since A and B might call each other‘s
update method recursively.

P C BL M F

E

16

Observer
Variations III

• Object A depends on object B and both A and B depend on C. There
is a cycle in the dependency graph. Depending on the upda te
strategy, this could result in incorrect results and / o r redundancy
updates as well.

• For example, if C changes and A is notified first and th e subject A
changes its state as part of the update implementation, A will receive
an update call twice. There is no general solution to th e problem of
cylces in the dependency graph. Sophisticated Change Ma nagers are
not often useful, because they cannot be used in many situatio ns and
better and cheaper specialized solutions can frequently be found.

P C BL M F

E

9

17

Facade

• How can the controler tier execute a use
case‘s business logic in one transaction ?

P C BL M F

E

18

Command

• Structure a system around high-level operations bui lt on
primitives operations.

• Such a structure is common in information systems t hat
support transactions. A transaction encapsulates a set of
changes to data. The Command pattern offers a way t o model
transactions. Commands have a common interface, let ting
you invoke all transactions the same way. The patte rn also
makes it easy to extend the system with new transac tions

P C BL M F

E

10

19

Session Facade

• Clean and strict separation of business logic from
presentation tier.

• Low coupling
• Good reusability
• Good maintainability

P C BL M F

E

20

Entity Factory

• How should entity object creation logic be
implemented, in order to minimize the impact of
frequent changes in the entity tier on the rest of the
system ?

• Place the responsibility for creating entitiy objects in a
entity object factory !

P C BL M F

E

11

21

Builder
• It lets you vary a product's internal representatio n.

– The Builder object provides the director with an abstract interface for
constructing the product. The interface lets the builder hide the
representation and internal structure of the product. It also hides how
the product gets assembled. Because the product is constructed
through an abstract interface, all you have to do to change the product's
internal representation is define a new kind of builder.

• It isolates code for construction and representatio n.
– The Builder pattern improves modularity by encapsulating the way a

complex object is constructed and represented. Clients needn't know
anything about the classes that define the product's internal structure;
such classes don't appear in Builder's interface.

P C BL M F

E

22

Abstract Factory

• Provide an interface for creating families of relat ed or
dependent objects without specifying their concrete
classes.

P C BL M F

E

12

23

Composite Entity

• The Composite Entity design pattern offers a solution to
modeling a networks of interrelated business entiti es. The
composite entity's interface is coarse-grained, and it manages
interactions between fine-grained objects internall y. This
design pattern is especially useful for efficiently managing
relationships to dependent objects

P C BL M F

E

24

Mediator
• It simplifies object protocols.

– A mediator replaces many-to-many interactions with one-to-many
interactions between the mediator and its colleagues. One-to-many
relationships are easier to understand, maintain, and extend.

• It centralizes control.
– The Mediator pattern trades complexity of interaction for complexity in

the mediator. Because a mediator encapsulates protocols, it can
become more complex than any individual colleague. This can make the
mediator itself a monolith that's hard to maintain.

Presentation Control
Business

Logic
Meditor Foundation

Entity

P C BL M F

E

13

25

Chain

• When a client issues a request, the request
propagates along the chain until a ConcreteHandler
object takes responsibility for handling it.

P C BL M F

E

Presentation Control
Business

Logic
Meditor Foundation

Entity

26

Data Acess
Command I

• How can persistence logic
and persistent store be
decoupled and
encapsulated away from
business logic ?

• Encapsulate persistence
logic into data access
command objects, which
decouple business logic
from all persistence logic !

P C BL M F

E

14

27

Data Access
Command II

• Clients should
not be forced to
depend upon
interfaces that
they do not use.

P C BL M F

E

28

Proxy

• A remote proxy provides a local representative for an object in a
different address space.

• A virtual proxy creates expensive objects on demand . The ImageProxy
described in the Motivation is an example of such a proxy.

• A protection proxy controls access to the original object. Protection
proxies are useful when objects should have differe nt access rights.

• A smart reference is a replacement for a bare point er that performs
additional actions when an object is accessed.

– counting the number of references
– loading a persistent object into memory when it's first referenced.
– checking that the real object is locked before it's accessed to ensure that no other

object can change it.

P C BL M F

E

15

29

Proactive and reactive Software
Development

• Architectural design takes an proactive approach to
managing dependencies in software
– This is a forward-engineering approach – from design to

implementation
– The aim is to deliver software design that minimizes

dependecnies by an architectural solutions to developers
• Proactive approach must be supported by the reactive

approach that aims at measuring dependencies in
implemented software
– This is the reverse-engineering approach – from

implementation to design
– The implementation may or may not conform to the desired

architextural design

30

Cohesion Of Methods

• Metric 5: (LOCOM*) Lack Of Cohesion Of
Methods (The definition of this metric was proposed
by Henderson-Sellers in 1995)

– Measures the dissimilarity of methods in a
class by attributes.

– Consider a set of m methods, M1, M2, ... , Mm

– The methods access a data attributes, A1, A2,
... , Aa

• Let m(Ak) = number of methods that access
data Ak

– Viewpoints:
• Low value indicates good class subdivision

implying simplicity and high reusability.

• High lack of cohesion increases complexity,
thereby increasing the likelihood of errors
during the development process.

16

31

Cohesion Of Methods

• LCOM*
– If each method

accesses all attributes
then m(Ak) = m so

– At maximum cohesion
LCOM* = 0

• LCOM*
– If each method

accesses only one
attribute and a different
attribute then we have:

– At "minimum cohesion"
LCOM* = 1

32

Coupling between Objects

• Metric 6: (CBO) Coupling between Objects (Chidamber &
Kemerers(1994) modified the definition of CBO)
– CBO for a class is a count of the number of related couples with other

classes. Represents the number of other classes to which a class is
coupled

– The Fan-out of a class, C, is the number of other classes that are
referenced in C

– A reference to another class, A, is a reference to a method or a data
member of class A

– In the fan-out of a class multiple accesses are counted as one access
– The Fan-in of a class, C, is the number of other classes that reference

in C
– Definition CBO = fan-out of a class

• CBO counts the number of reference types that are u sed in
attribute declarations, formal parameters, return t ypes, throws
declarations and local variables, and types from wh ich
attribute and method selections are made. Primitive types,
types from java.lang package and supertypes are not c ounted.

17

33

Coupling between Objects

• Viewpoints:
– High fan-outs represent class coupling to other

classes/objects and thus are undesirable
– High fan-ins represent good object designs and high level of

reuse
– It does not seem possible to maintain high fan-in and low fan

outs across the entire system
– Excessive coupling between objects is detrimental to

modular design and prevents reuse. The more independent
a class is, the easier it is to reuse it in another application. In
order to improve modularity and promote encapsulation,
inter-object class couples should be kept to a minimum. The
larger the number of couples, the higher the sensitivity to
changes in other parts of the design, and therefore
maintenance is more difficult.

– A measure of coupling is useful to determine how complex
the testing of various parts of a design is likely to be. The
higher the inter-object class coupling, the more rigorous the
testing needs to be.

