

Timing Definition Language (TDL)

Specification 1.5

Josef Templ

C. Doppler Laboratory Technical Report T024
Embedded Software Systems (revises T020)
University of Salzburg October 2008
Austria

Timing Definition Language
(TDL) Specification 1.5

Abstract
This document defines the syntax and semantics of the Timing Definition
Language (TDL). TDL allows one to specify the timing behavior of a hard real
time application in a descriptive way and separates the timing aspect of such
applications from the functionality, which must be provided separately using an
imperative programming language such as Java, C or C++. TDL is conceptually
based on the Giotto language (Giotto project 2000 – 2003; University of
California, Berkeley), but provides extended features, a more convenient syntax,
and an improved set of programming tools.

Introduction
TDL represents a domain specific language for the target domain of dependable
hard real time systems that may be run on a variety of platforms including
distributed systems connected via a time-triggered communication medium.

TDL allows one to describe the timing behavior of a hard real time application
and thereby separates the timing aspect of such applications from the
functionality. TDL programs are purely declarative, ie. all imperative parts of a
control application must be provided separately using an imperative
programming language such as Java, C or C++. This separation leads to platform
independent TDL timing models, which may be implemented on an open set of
target platforms.

The following sections describe the lexical structure, the syntactical structure,
and the semantics of TDL step by step. A complete definition of all lexical and
syntactical rules as well as a complete example is presented in the appendix.

Please note that this document is not an introduction into the emerging field of
time triggered control systems and model based development but assumes some
familiarity with the established concepts and terminology of this realm.

Relation to Giotto
TDL is conceptually based on the time triggered modelling language Giotto
[Giotto] but provides a more convenient syntax and an improved set of
programming tools. The TDL compiler and the runtime system needed for the
execution of TDL programs (E-machine [PLDI02]) resulted from a clean room
implementation without access to the Giotto compiler or E-machine sources. We

 Timing Definition Language (TDL) Specification 1.5 • 1

tried to preserve the spirit of Giotto as far as possible and made only changes and
extensions which we believe are absolutely necessary for applying this
technology in an industrial environment as opposed to the research lab usage of
Giotto. Please see Section Differences to Giotto for a list of differences.

Acknowledgements
We would like to thank Prof. Christoph Kirsch, the author of the original Giotto
tools, for many hints regarding subtle points of the Giotto specification and his
willingness to discuss possible modifications of Giotto finally leading to TDL.
Thanks to Prof. Wolfgang Pree and the members of the MoDECS team (Emilia
Farcas, Claudiu Farcas, and Gerald Stieglbauer) as well as the members of the
TDL4FlexRay team (Andreas Naderlinger, Johannes Pletzer, and Stefan
Resmerita) for their contributions. Finally we want to thank Hanspeter
Mössenböck for providing the excellent compiler generator Coco/J free of
charge and for the changes he made in response to our needs.

Lexical Structure
A TDL specification is represented as an ASCII text. Sequences of characters
form words, also called tokens, and the sequence of tokens forms the text. White
space between tokens as well as comments are ignored. Tokens may be
keywords, operators, identifiers or literals. Keywords are reserved and must not
be used as identifiers.

White Space and Line Separators
Blank, line feed (LF), carriage return (CR), and tabulator (TAB) characters are
ignored and commonly referred to as white space. They serve to separate tokens
but have no further meaning except that line feed and carriage return characters
are used to count line numbers in order to emit precise error messages. TDL
supports three common forms of line separators: CR, LF and CR+LF.

Comments
TDL allows comments as in the programming language Java, i.e. line comments
start with // and end with the end of line, and block comments are enclosed
within /* and */. Block comments may not be nested, however, block
comments may contain line comments.

Examples:

//this is a line comment
/* this is a block comment
 //that contains a line comment
 and some other lines.
*/

Identifiers
An identifier starts with an ASCII-letter (A-Z, a-z, _) followed by an arbitrary
sequence of such letters and digits (0-9). Identifiers must not contain white space
and must be different from keywords.

Examples:

MyModule s1 _test_task

Timing Definition Language (TDL) Specification 1.5 • 2

Keywords and Operators
The following set of keywords is defined in TDL. Keywords must not be used as
identifiers.

actuator as asynchronous const false if import init
input mode module output public sensor start state
struct task then true type uses

The following set of operators and special symbols is used in TDL:

{ } [] () ; = . := ,

Literals
TDL supports numeric and string literals. A numeric literal is a sequence of
decimal digits, a string is a sequence of arbitrary characters enclosed in single or
double quotes. The enclosing quote character must not occur inside the string.
Character literals are strings of length one.

Examples:

0, 123, 3.14159, 'abc', "bob's house", 'x'

Syntactical Structure
An EBNF grammar notation is used in order to define the syntax of TDL.
Keywords, operators and special symbols are enclosed in double quotes. The
following meta symbols are used for defining the productions.

Symbol Meaning

::= separates the non terminal symbol (left hand side) of a production from
the right hand side.

. terminates a production.

| separates alternatives.

[] encloses optional parts (zero or one).

{} encloses iterated parts (zero or more).

() overrides binding rules.

The overall goal of the chosen syntax is that TDL programs should be easily
readable by humans. Since many of the readers are expected to be used to work
with Java or C programs, some aspects are similar to those languages. In
addition some constructs have been borrowed from Pascal style languages and,
of course, from Giotto. The TDL grammar is designed to be parsed by a top
down recursive descent parser, as produced, for example, by the compiler
generator Coco/R [Coco]. Thus, it fulfills the LL(1) rule for context free
grammars. For the sake of explaining the syntax, however, we do not always use
the LL(1) version of the grammar, which is presented in the appendix.

In the following subsections, we proceed in a top-down fashion and start with
the definition of a compilation unit, which is called a module in TDL.

Module
A module has a name (after keyword "module") and provides a namespace for
the definition of constants, types, sensors, actuators, global outputs, tasks,
modes, and asynchronous activities.

 Timing Definition Language (TDL) Specification 1.5 • 3

The name of a module may be composed of a sequence of identifiers separated
by dots, called a qualified identifier. In general, a qualified identifier consists of
a qualifier and an identifier. The qualifier my be empty, though.

In order to create globally unique module names, we recommend to use the
vendor's internet domain name in reverse order (most significant part first, e.g.
com.mycompany) followed by a project name as the qualifier and then a
module identifier as the right most part of the module name.

TDLModule ::=

 "module" qualIdent "{"

 {"import" {importDecl ";"}}

 {attr "const" {constDecl ";"}}

 {attr "type" {typeDecl}}

 {attr "sensor" {sensorDecl ";"}}

 {attr "actuator" {actuatorDecl ";"}}

 {attr "output" {portDecl ";"}}

 {attr "task" taskDecl}

 {modeDecl}

 ["asynchronous" asyncDecl]

 "}".

qualIdent ::= [qualifier] identifier.

qualifier ::= {identifier "."}.

attr ::= ["public"].

The namespace introduced by a module is enclosed within braces. Names
declared within this namespace are visible from the point of declaration up to the
end of the module. There may only be a single module per compilation unit.

Declarations may be preceded by the specification of a visibility attribute. All
names which are declared public are visible to client modules outside the
declaring module. Names which are not declared public are private.

A name n declared public in a module m can be referred to in client modules
by using the notation m.n. A public task (cf Sec. Task Declaration) implicitly
exports all of its output ports. An output port o of task t of service module m can
be accessed in client modules using the notation m.t.o. It is not possible to
invoke the task in client modules, but only to access its output ports. Actuator
ports must not be public.

Examples:

module M {
 //import declarations ...

 //constant, type, sensor, actuator,

 //and task declarations ...

 //mode declarations ...
}

Please refer to the appendix for an example of a complete module.

Timing Definition Language (TDL) Specification 1.5 • 4

Import Declaration
A module may depend on other modules. This dependency is expressed by
specifying an import declaration. With respect to the import relationship
between modules, the imported module is called a service module, whereas the
importing module is called a client module. A module must not import itself.
Thus, the import relationship between modules forms a directed acyclic graph
(DAG).

An exception to this rule are so called temporal cycles, which are allowed in
TDL. A temporal cycle means that only the mode declarations make use of
cyclic dependencies and the cycle disappears if the modes and the no longer
needed import declarations are ommitted from the modules.

importDecl ::= simpleImport | groupImport.

simpleImport ::= qualIdent [moduleAlias].

groupImport ::= qualIdent "{" importModule {"," importModule} "}".

importModule ::= identifier [moduleAlias].

moduleAlias ::= "as" identifier.

A simple import declaration specifies the qualified name of the imported module
optionally followed by an alias name. The alias name, if specified, is used inside
a client module to refer to a service module. If no alias is specified, the module
identifier is used as an implicit alias name. This allows and actually forces the
usage of unqualified module names within a client module whenever an
imported module is referenced.

If a group of modules with equal qualifiers is to be imported, a short hand
notation may be used as an alternative to a sequence of ordinary imports. The
group import specifies the qualifier followed by a set of module identifiers
enclosed in braces. Optionally, for every module an alias may be specified.

Examples:

import M1; M2;
import com.xxx.yyy.M2 as M2xy;
import com.xxx.yyy{M1 as M1xy, M3, M4};

Constant Declaration
A constant declaration associates a name with a constant value. The constant
value may be denoted as a literal or as the name of another constant. Currently
there are no operators allowed within constant expressions (this may be added in
a later version). Constants may be used, for example, for initialization of ports
(see below) or for timing attributes.

constDecl ::= identifier "=" constExpr.

constExpr ::= ["-"] number ["." number | identifier]

 | constExprBoolean | string | constDesignator.

constExprBoolean ::= "true" | "false".

constDesignator ::= qualIdent.

The optional identifier following a number may assume the values ms or us and
denotes the timing unit milliseconds or microseconds resp., where the latter is

 Timing Definition Language (TDL) Specification 1.5 • 5

the default. Millisecond values will be converted to microseconds, i.e. they are
multiplied by 1000. Otherwise the timing unit has no effect.

Examples:

const C1 = 77;
const pi = 3.14159;
const C2 = C1; yes = true;

Type Declaration
A type declaration associates a name with a type, which may either be an
existing type or a new type. A new type (also called a user-defined type) is either
an array type or a structure (similar to struct in C or RECORD in Pascal).

In order to execute a control application, all user-defined types must be provided
in a form accepted by the E-machine being used. For a Java-based E-machine,
for example, a class with the name of the type must be provided. This is,
however, outside the scope of the TDL language definition (see Sec. Language
Bindings).

TDL provides a set of basic types, which matches those found in the
programming language Java. The basic types are predeclared in a universal
scope outside the module and they are named byte, short, int, long,
float, double, char, and boolean. Please note that the basic type char is
a single-byte ASCII character as opposed to Java's Unicode char type.

typeDecl ::= identifier "="

 (typeDesignator ";"

 | typeDesignator "[" constExpr "]" ";"

 | "struct" structScope [";"]

).

typeDesignator ::= qualIdent.

structScope ::= "{"

 { typeDesignator identifier { "," identifier } ";" }

 "}".

The first form of typeDecl introduces an alias name for the type denoted by
typeDesignator. The second form introduces an array type with element
type denoted by typeDesignator and array length denoted by constExpr,
and the third form introduces a structure type with its members defined in
structScope. Arrays with element type char are compatible with string
literals if the array length exceeds the number of characters in the string.

Examples:

type smallint = short;
type String = char[32];
type Complex = struct {float x, y;}

Sensor Declaration
A sensor declaration defines a read-only variable which represents a particular
value of the physical environment of a TDL program. During execution, sensor

Timing Definition Language (TDL) Specification 1.5 • 6

values may change with the progression of time as implied by the physical
environment.

sensorDecl ::= typeDesignator identifier ["uses" extIdent].

extIdent ::= qualIdent.

Sensors are typed variables which may be connected with the environment by
using a so-called getter function denoted by the external identifier extIdent.
A getter is an external function which returns a value compatible with the
sensor's type. It must be implemented according to the language binding rules
and environment the program is executed in.

Examples:

sensor int s1 uses getS1;
sensor Complex s2 uses getS2;

Actuator Declaration
An actuator declaration defines a write-only variable which controls the setting
of a particular value of the physical environment of a TDL program. During
execution, actuator values may change with the progression of time as defined
by the TDL module (see Actuator Update). Actuators may only be set within the
module they are declared in.

actuatorDecl ::= typeDesignator identifier [initExpr] ["uses" extIdent].

initExpr ::= ":=" constExpr | "init" extIdent.

Actuators may be initialized either with a constant value or with an external
function, called an initializer. Initializers are (like getters) functions, which must
return a value compatible with the actuator's type. They must be implemented
according to the language binding rules and environment the program is
executed in. Actuators which are not initialized explicitly are assumed to be
nullified at program start.

Actuators are typed variables which may be connected with the environment
using a so-called setter function. A setter is an external function with a single
parameter compatible with the actuator's type. It must be implemented according
to the language binding rules and environment the program is executed in.

Examples:

actuator int a1 := 1 uses setA1;
actuator Complex a2 init initA2 uses setA2;

Output Declaration
Output ports declared at the module level represent global output ports, ie. they
may be used as output ports by any task of the module. For more details about
tasks and task output ports please refer to section Task Declaration.

portDecl ::= typeDesignator identifier [initExpr].

 Timing Definition Language (TDL) Specification 1.5 • 7

Output ports are initialized either with a constant value or with an external
function, called an initializer. Output ports which are not initialized explicitly are
expected to be nullified at program start.

Examples:

output int o;
output Complex p init initP;

Task Declaration
A task declaration defines a task, which encapsulates a computation typically to
be carried out periodically by a real time application (see Sec. Mode Declaration
below). Tasks provide a namespace for the declaration of input, output and state
ports. In addition, a task uses associated external procedures (including
arguments), which perform the task's computation.

taskDecl ::= identifier [wcet] "{"

 {"input" {inPortDecl ";"}}

 {"output" {portDecl ";"}}

 {"state" {portDecl ";"}}

 {"uses" {[driverAnnotation] call ";"}}

 "}".

wcet ::= "[" [attrName "="] constExpr "]".

attrName ::= identifier.

A task may have a worst case execution time (wcet) specification, which
specifies the maximum time the computation is allowed to take on any platform.
Optionally, this attribute may be explicitly named wcet. The amount of time is
specified by a constant expression. Please note that the platform specific worst
case execution time of a task is expected to be specified outside the TDL module
where a module is associated with a particular execution platform.

inPortDecl ::= typeDesignator identifier.

call ::= extIdent "("[portDesignator {"," portDesignator }] ")".

portDesignator ::= qualident.

driverAnnotation ::= "[" identifier "]".

Tasks may be connected via their input and output ports to other program
entities. State ports, however, are always private to the task and serve only to
save state between repeated invocations. The details of connecting tasks will be
defined in mode declarations further below.

Output and state ports may be initialized either with a constant value or with an
external function, called an initializer. Output and state ports which are not
initialized explicitly are expected to be nullified at program start.

The external procedures used by a task serve to perform the actual computation,
which in the regular case (ie with a single external procedure and without any
driverAnnotation) is executed after a task has been released and before the
logical execution time of the task elapses. Output port updates will be available
only after the logical execution time of the task elapses.

Timing Definition Language (TDL) Specification 1.5 • 8

For the benefit of digital controller applications, a task's functionality code may
be split in parts, (1) a fast step and (2) a slow step, where the fast step is
executed in logical zero time right at the release time of the task and the slow
step is executed regularily. The difference is expressed by means of a
driverAnnotation, which must take the value of release for the fast
step. In any case, an output port must not be updated by more than one step.
Output ports updated in the fast step are available immediately for actuator
updates in task sequences as defined under mode declarations below.

The arguments of an external procedure must be taken exclusively from the
task's ports and the module's global output ports and they are treated by the
external procedure as input (value) or in-out (reference) parameters accordingly.
Output ports defined locally within a task take precedence over equally named
global output ports.

Examples:

task t0 {
 input double i;
 output double o;
 uses t0Impl(i, o);
 //i is input, o is in-out parameter
}

task digitalController [10ms] {
 input int i1, i2;
 output int o := 0;
 state double s := 0;
 uses [release] controllerOutput(i1, i2, s, o);
 //o must be calculated here
 uses controllerUpdate(i1, i2, s, o);
 //o is an input parameter here
}

Mode Declaration
A mode declaration defines a mode, which is a particular state of operation of a
real time application. In general, real time applications may consist of multiple
modes1, one of them will be the start mode. Starting a TDL program means to
switch the E-machine into the distinguished start mode of the modules being
executed.

A TDL mode consists of a set of activities to be executed periodically. The
period of a mode is defined by a constant expression which may be preceded by
the explicit attribute name period. Activities carried out in a mode include task
invocations, actuator updates and mode switches.

A particular task invocation or actuator update must occur only once per mode
and a global output port must only be set by one task invocation of a mode.

modeDecl ::= ["start"] "mode" identifier period "{"

 {"task" {taskInvocation}}

 {"actuator" {actuatorUpdate}}

 {"mode" {modeSwitch}}

 "}".

1 A Helicopter control system, for example, may consist of a hover mode and a cruise mode. In hover mode the
system tries to maintain a fixed position, in cruise mode it will try to reach a previously defined position. The control
tasks will be different for both modes, although there may also be common functionality.

 Timing Definition Language (TDL) Specification 1.5 • 9

period ::= "[" [attrName "="] constExpr "]".

Every activity is performed with a particular frequency per mode period. The
mode period must be dividable by this frequency without remainder. The
frequency is specified as an attribute of each activity and may be explicitly
named freq.

Every activity may be guarded by an external function, called a guard. A guard
takes sensors or task output ports as arguments and returns a boolean result. The
activity will only be carried out if the guard evaluates to true.

Task Invocation
A task invocation means that the task's input ports are updated according to the
assignment list and the task's computation is scheduled for execution. The
assignment list may be specified either by a set of assignment statements or by
providing an argument list where each port is assigned to an input port in
declaration order. The source ports must either be sensors, task output ports, or
global output ports. A task invocation may only invoke a task that is defined in
the same module.

taskInvocation ::= frequency guard

 (taskDesignator inputParams [";"] | sequence).

frequency ::= "[" [attrName "="] constExpr [slotSelection] "]".

slotSelection::= [attrName "="] slotSel.

slotSel ::= [slotGroup {"|" slotGroup}].

slotGroup ::= ["~"] startSlot ["-" endSlot] ["*"].

startSlot ::= constExpr.

endSlot ::= constExpr.

guard ::= ["if" call "then"].

taskDesignator ::= identifier.

inputParams ::= (assignmentList | paramList).

assignmentList ::= "{" {identifier ":=" portDesignator ";"} "}".

paramList ::= ["(" [portDesignator {"," portDesignator}] ")"].

Execution of the computation may be done in parallel with other activities and
constitutes an asynchronous operation. The output values, however, will only be
available after the logical execution time (LET) of the task has elapsed. The LET
for a task invocation with frequency f (this attribute may optionally be named
freq) in a mode with period p is defined as p/f unless slot selection is being
used. With slot selection (the second attribute, which may optionally be named
slots), the LET of any individual task invocation may be defined more
explicitly as an intervall that starts and ends at an integer multiple of p/f where
the first slot has number 1. Such an intervall is called a slot group. In order to
provide a compact syntax for specifying repeating patterns for slot groups until
the end of the mode or until the next slot group, the character * may be used.
The character ~ serves to mark a slot group as being optional, ie. at execution
time it is allowed to ignore such a task invocation, which may help to find a
feasible schedule. If the end slot is not specified explicitly it is the same as the
start slot.

Timing Definition Language (TDL) Specification 1.5 • 10

If slot selection is not used, this actually defaults to slots=1*., which means
that all slots are to be filled with a mandatory task invocation with LET=p/f.

Examples for slot selection:

slots=1* all slots are mandatory and LET=p/f; this is the default.
slots=~1|2* the first slot is optional, the remaing slots are mandatory.
slots=1-3* mandatory slot groups with LET=3*p/f each.

In case of using the output ports of a task by other activities before the task's
LET has elapsed, the previous values of the output ports are used. The
intermediate values of output ports are never visible to other program entities.

Note that the sum of the worst case execution times (wcet) of all task invocations
must not exceed the mode period.

Actuator Update
An actuator update means that the value of an actuator is set according to the
specified assignment. In addition, the setter of the actuator will be called. An
actuator update is a synchronous operation taking place in logical zero time. The
update period of an actuator update with frequency f in a mode with period p is
defined as p/f. Actuator updates start after the update period has elapsed, i.e. they
are neither carried out at time zero nor in the target mode at the time of a mode
switch, but with a delay of one update period.

actuatorUpdate ::= frequency guard actPortDesignator

 ":=" portDesignator ";".

actPortDesignator ::= identifier.

Task Sequence
A task sequence combines a task invocation and subsequent actuator updates
where the actuator updates are performed right at the release time of the invoked
task given that the task contains a fast step that provides the required output
ports. The actuator updates are executed as early as possible, after the fast step of
the invoked task, which may be required by digital controller applications.

sequence ::= "{"

 taskDesignator inputParams ";"

 {actPortDesignator ":=" portDesignator ";"}

 "}".

Mode Switch
A mode switch means that the control application switches its current mode of
operation to the specified target mode and performs the specified port
assignments. The assignments must be to output ports of tasks invoked in the
target mode and must be thought of as initializations carried out as a first step in
the affected target task's functionality code. The target mode must be different
from the source mode.

modeSwitch ::= frequency guard modeDesignator assignModePorts.

modeDesignator ::= identifier.

 Timing Definition Language (TDL) Specification 1.5 • 11

assignModePorts ::= assignmentList | ";".

A mode switch is a synchronous operation taking place in logical zero time. The
switch period for a mode switch with frequency f in a mode with period p is
defined as p/f. A mode switch must not occur during the LET of an invoked task,
thus, mode switches are said to be harmonic. If multiple mode switches are
possible at a particular time, they are evaluated in textual order and the first
applicable one is taken.

Mode switches in the target mode are never evaluated at the time of the mode
switch but with a delay of one switch period. This prevents mode switch cycles
without any time passing. The same holds for actuator updates in the target
mode, which are not carried out at the time of the mode switch but after the first
update period has elapsed.

Examples:

start mode main [period = 100ms] {
 task [freq=2] t0(s1);
 task [freq=5, slots=1-2*] {t1(s2, s3); a1 := t1.o;}
 actuator [freq=2] a2 := t0.o;
 mode [freq=1] if switchToFreeze(s2) freeze;
}

mode freeze [period=1000ms] {
}

Asynchronous Declarations
An asynchronous activity in TDL is an activity that is carried out in the spare
time between execution of timed (synchronous) activities and thereby does not
disturb the real time properties of a system. Its execution may be triggered by a
variety of events. Asynchronous activities are never preempted by other
asynchronous activities but may be preempted by synchronous activities. The
TDL runtime system takes care of the synchronization of the data flow between
synchronous and asynchronous activities such that reading input ports, updating
output ports, and performing actuator updates are atomic actions.

asyncDecl ::= "{" {asyncSequence} "}" .

asyncSequence ::="[" asyncEvent "]" guard

 { taskDesignator inputParams ";"

 | actPortDesignator ":=" portDesignator ";"

 } .

TDL supports the grouping of asynchronous activities into sequences that are
triggered as one unit and executed strictly sequential. Any such sequence has an
associated trigger event, an optional guard, and a sequence of asynchronous
activities. An asynchronous activity may be a task invocation or an actuator
update. A task may either be invoked synchronously or asynchronously but not
both. Also, an actuator update must either be done synchronously or
asynchronously but not both.

Triggering an asynchronous activity sequence means that the sequence is
registered for execution at some later time at the discretion of the TDL runtime
system. Any additional triggering before the execution of the asynchronous

Timing Definition Language (TDL) Specification 1.5 • 12

activity sequence is ignored. Parameter passing takes place as part of the
execution not at the time of registration.

asyncEvent ::= eventAttr ["," priorityAttr] .

eventAttr ::= attrName "=" (portDesignator | constExpr) .

priorityAttr ::= attrName "=" constExpr.

The kind of event that triggers the execution of an asynchronous activity
sequence is specified by the attribute name interrupt, timer, or update.
In case of an interrupt, the attribute value must be an integer greater or equal to
zero. This logical interrupt number may need to be mapped to platform specific
interrupt specifications outside the TDL source code. In case of a timer, the
attribute value must be an integer greater than zero. It describes the period of a
timer in microseconds. In case of a port update, the attribute value must be the
name of an output port. Whenever this port receives a value it triggers the
asynchronous activity sequence.

The priority is specified by the attribute name priority and a value greater or
equal to zero where higher numbers mean higher priority. The priority attribute
affects the queueing order of registered asynchronous activity sequences. The
default is the lowest priority.

Examples:

asynchronous {

 [interupt=1, priority=5]
 if guard1(s1) then t1(s1, t.o); a1 := t1.o;

 [timer=10ms, priority=4]
 t2(s2);

 [update=t1.o]
 t3();

}

Distribution
The LET-based programming model of TDL provides the foundation for
transparent distribution of modules across a network of processing nodes.
Transparent distribution means that the observable behavior of a system is the
same no matter if it is executed locally or distributed over several nodes. The
time between finishing a physical task execution and the task's LET may be used
for transmitting information to remote nodes without affecting the semantics of
the TDL modules.

The definition of the topology of a distributed TDL system is beyond the scope
of the TDL language specification and it is up to external tools. Calculating a
proper communication schedule, that preserves the logical timing behavior of a
distributed TDL system, may either be done automatically, if an appropriate
scheduling tool is available or manually, if specific constraints have to be
observed. Again, this is left to external tools and conventions and is intentionally
left unspecified in the TDL language specification.

 Timing Definition Language (TDL) Specification 1.5 • 13

Language Bindings
Functionality code required by a TDL module is provided as static (global)
procedures or functions in a particular programming language. In principle, there
is an open set of languages which may be used by an E-machine. The following
subsections define the recommended conventiones for commonly used
programming languages.

Java
For every external function (sensor getter, actuator setter, port initializer, task
implementation, guard) there must be a corresponding public static Java
function with appropriate parameters and return types. The external function
may be qualified in the TDL program by a dot-separated list of identifiers in
front of the function's name or it my be unqualified. The following naming
conventions apply.

Naming Conventions
The Java name for an unqualified function f in module m is m.f. Thus, it must
be defined in a class named after the module and contained in a package as
indicated in m. The package name of m is the qualifier, if there is one, otherwise
the anonymous Java package is used. The class name is the identifier of m.

Qualified external functions must be provided in a class and package as specified
by the qualification.

Type Mapping
The basic TDL types are mapped 1:1 to primitive Java types. For struct TDL
types, a public class named after the type must be provided in the package
indicated by the module name. In addition, this class must have a public no-arg
constructor and it must implement interface
com.preetec.tdl.tools.emachine.types.Struct in order to
provide the ability to copy itself.

For output and state ports of a primitive type, an auxiliary reference class has to
be used2. These classes are contained in package
com.preetec.tdl.tools.emachine.types for all primitive types.
The naming convention is that for a primitive type T there exists a corresponding
reference class named ref_T.

For output and state ports of struct or array types, there is no need to provide
auxiliary reference classes since objects are passed by reference in Java anyway.
Struct types are treated like struct in C or RECORD in Pascal and are copied
by the E-machine when assigned to a port. The same holds for array types,
which are copied by means of java.lang.arraycopy().

ANSI-C
External functionality code written in ANSI-C is expected to be provided in two
files, a header and a body file. According to common C programming
conventions the header file contains the exported function prototypes and type
definitions. The body file includes the header file and defines the functions as
declared in the header file. For a module m the header file is named m.h and the
body file is named m.c where every '.' in m is replaced by '_'. The replacement

2 Note that Java does not provide reference parameters. Therefore we have to emulate them by using auxiliary
classes.

Timing Definition Language (TDL) Specification 1.5 • 14

of dots by underscores also applies wherever m is used in the C code as part of a
qualified name which contains m as a prefix.

A template of the header file can be generated by the TDL compiler plugin for
ANSI-C. This template can be renamed to m.h and missing parts such as
comments can be filled in manually.

The basic types defined in TDL are available by including tdl_types.h.

Module Initialization
Every module m must provide a parameterless extern void ANSI-C init
function named m_init.

Functionality Code
For every external function (sensor getter, actuator setter, port initializer, task
implementation, guard) there must be a corresponding extern void ANSI-C
function with appropriate parameters and void return type. The external function
may be qualified in the TDL program by a dot-separated list of identifiers in
front of the function's name or it may be unqualified. The following naming
conventions apply.

Naming Conventions
The C name for an unqualified function f in a module m is m_f. Thus, name
spaces in TDL are mapped to fully expanded C names where name parts are
concatenated by using the '_' character. This provides unique C function names
without the need of a name space construct.

The C name for a qualified function f is derived from f by replacing all
occurrences of '.' by '_'.

Type Mapping
The basic TDL types are mapped to primitive C types according to the following
table. For TDL struct and array types, a corresponding C type must be available
by using a typedef statement (or by defining a macro). The name of the type
follows the naming conventions described above for functions.

A C-based E-machine passes struct and array parameters by reference no matter
if they are used as input or inout parameters (for arrays this is forced by C
anyway). This avoids unnecessary copy operations. In order to prevent
accidental modification of such parameters, they should be marked as const
when passed as value parameter. It should be noted that the E-machine may copy
variables. Thus, there must not be any pointers to or inside parameters.

TDL type C name default C type
byte tdl_byte signed char
boolean tdl_boolean unsigned char
char tdl_char unsigned char
short tdl_short short int
int tdl_int long int
long tdl_long long long
float tdl_float float
double tdl_double double

 Timing Definition Language (TDL) Specification 1.5 • 15

Parameter Passing
Sensor getters and port initializers are void functions that provide their result via
a single output parameter, which is passed by reference. Actuator setters are void
functions that have a single input parameter. Guards are functions with int as
return type and with input parameters only. They return their result as the integer
value zero (false) or non-zero (true). The number and order of parameters of task
implementation functions is exactly the same as in the TDL source code. Input
ports are passed as input parameters and state and output ports are passed as
output parameters.

Input parameter of basic types are passed by value and structured and array types
are passed by reference. Output parameters are always passed by reference.

TDL Version History

Version 1.5
• Asynchronous activities added.

Version 1.4
• Syntax: Flexible slot selection added. It is now possible to separate

the LET from the repetition period and to specify optional task
execution.

Version 1.3
• Syntax: Global Output Ports added. In addition to having output

ports defined per task, it is now also possible to have output ports
defined at the module level. Such output ports may be set by any
task of a module. Only one task invoked in a mode may set a global
output port, though.

Version 1.2
• Syntax: Struct and array types added. In order to improve the

integration of TDL with Simulink or similar tools, it is now
possible to define struct and array types directly within a TDL
module rather than using opaque types.

• Syntax: Opaque and String type removed. Opaque types can be
expressed as either struct or array types. String can now be
expressed as array of characters with explicit length.

• Language bindings: The language binding rules for Java and C
have been extended and adapted in order to cover struct and array
types. The new C-language binding rules drop the usage of non-
void functions, ie. they prescribe the usage of reference parameters
instead of function return values.

• ecode file format: adaped for struct and array types. String and
Opaque removed, Alias added.

Timing Definition Language (TDL) Specification 1.5 • 16

Version 1.1
• Syntax: splitting a task function into a fast and a slow part added to

task declarations (taskDecl) by means of multiple uses clauses with
driver annotation.

• Syntax: immediate actuator port update added to mode declarations
(modeDecl) by means of task sequences (sequence).

• Semantics: temporal cyclic imports are allowed, ie. task output
ports used in modes may be imported cyclically.

• Compiler: the TDL compiler (tdlc) supports module groups with
automatic import ordering and temporal cycle management if the
modules are enclosed in parentheses, eg. (M1.tdl M2.tdl)

• ecode file format: every module gets two keys now, a public key
and a full key. The public key provides a hash code of the publicly
visible module interface, the full key provides a hash code of the
full module.

• ecode file format: imports section now uses pubKey rather than
key.

• ecode file format: releaseImpl+impl in task as list of impl calls with
tag, no longer in start/stop driver.

• ecode file format: start/stop drivers removed from driver table.

• ecode file format: DRVTAG-SWITCH got a new numeric code.

• ecode file format: sequences added to mode

• ecode file format: qualPortID has special moduleID -2 for access to
physical port value, used for actuator updates.

• ecode file format: NOP instruction got an argument and is used to
delimit ecode sections for two phase execution for cyclic imports,
see ECode.NOPTAG

• C language bindings: for every module there must be an
initialization function in the functionality code.

Differences to Giotto

Syntactical Differences
The most visible syntactical differences between TDL and Giotto are:

• the introduction of a top level language construct (module) and the
reorganization of mode declarations, where 'start' is a modifier of a
mode declaration in TDL,

• in addition to global output ports, TDL provides also task output
ports,

• the elimination of explicit task and mode drivers, which are merged
into mode declarations in TDL,

• the addition of constants, which may also be used to initialize ports
in TDL,

• the introduction of units for timing values in TDL,

 Timing Definition Language (TDL) Specification 1.5 • 17

• the introduction of asynchronous activities.

Semantical Differences
The following list explains differences between TDL and Giotto semantics.

• [program start] a TDL program is started by switching to the start
mode. This means that at time zero, there are neither actuator
updates nor mode switches. In Giotto, the actuator updates and
mode switches of the start mode take place at time zero. There are,
however, no further actuator updates or mode switches of the target
mode at time zero.

• [non-harmonic mode switch] Giotto allows a mode switch even if
there are running tasks as long as those tasks exist with the same
task period in the target mode. However, there may be delays
involved when switching to the target mode. Furthermore, the task
will deliver output values to the target mode, which do not
correspond to inputs specified there. TDL does not allow non-
harmonic mode switches. We are thinking about alternative ways
of performing even faster mode switches without the need to
continue running tasks in the target mode, with simpler semantics
and, last but not least, without any delays.

• [deterministic mode switch] Giotto requests that among all mode
switch guards of a mode only one may return true at a particular
point of time. In contrast, TDL evaluates mode switch guards in
textual order from top to bottom and performs the first mode switch
whose guard returns true. This definition allows a more efficient
implementation without compromising determinism.

• [actuator update] A guarded actuator update in Giotto means that
the actuator setter is called independently of the guard's result. In
TDL, actuator update and actuator setter are both guarded and
performed only if the guard returns true.

• [mode port assignments] Assignments of task output ports upon a
mode switch is done as an initialization in the affected target task
in TDL. In Giotto it is performed before the target task is invoked,
thus, it is visible to clients earlier and thereby implies problems for
distributed execution.

• [sensor read] Giotto defines that sensors are read right before task
invocations and, as a consequence, sensor values used for actuator
updates or mode switches are old values. TDL uses current values
for sensors in all places in order to provide deterministic behavior
even in the case that multiple modules access a shared sensor.

Tool Related Differences
The following list describes tool related differences between TDL and Giotto.

• [E-code file format] TDL defines a binary, platform independent E-
code file format and uses statically typed APIs for connecting
programs with external functionality code.

• [E-code instructions] The structure and semantics of Giotto E-code
instructions has not been changed in TDL but one addition has
been made.

• A SWITCH instruction has been added to E-code. It is used to
perform mode switches. In Giotto, mode switches are performed by

Timing Definition Language (TDL) Specification 1.5 • 18

the JUMP instruction by jumping to code of a different mode. The
SWITCH instruction makes this special usage of JUMP explicit
and thereby simplifies the detection of mode switches by the E-
machine.

• [Time Resolution] TDL uses microseconds internally for all timing
values, whereas Giotto is based on milliseconds. This means, that
TDL programs may use mode periods below 1 millisecond, given
that the underlying E-machine supports fast enough scheduling.

• [Java based E-machine] is designed as a JavaBean, which means
that it is possible to register any number of listeners. This may be
used to visualize the execution of TDL programs, for example,
without including visualization in the basic E-machine directly.

References
[Giotto] Henzinger, T., Horowitz, B., Kirsch, Ch.: Giotto: A Time-

Triggered Language for Embedded Programming. Proceedings of
the IEEE, Vol. 91, No. 1, January 2003.

[PLDI02] Henzinger, T., Kirsch, Ch.: The Embedded Machine: predictable,
portable real-time code. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pp 315—326, 2002.

[Coco] Mössenböck, H.: Coco/R for Java. http://www.ssw.uni-
linz.ac.at/Research/Projects/Coco

Appendix A: TDL Grammar

Complete EBNF Grammar
The lexical and syntactical structure of TDL is defined using the compiler
generator Coco/R for Java [Coco]. The complete grammar without attributes
and semantic actions is shown in the following. CHARACTERS defines the
character sets for the lexical tokens, IGNORE defines the characters being
ignored in addition to blank characters, TOKENS defines the lexical token
classes, COMMENTS defines the structure of comments and PRODUCTIONS
defines the syntax of TDL.
COMPILER TDLModule;

CHARACTERS
 letter =
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_".
 digit = "0123456789".
 tab = "\t".
 lf = "\n".
 cr = "\r".
 noQuote1 = ANY - "'" - cr - lf.
 noQuote2 = ANY - '"' - cr - lf.

TOKENS
 identifier = letter {letter | digit}.
 string = "'" {noQuote1} "'" | '"' {noQuote2} '"'.
 number = digit {digit}.

COMMENTS FROM "/*" TO "*/"
COMMENTS FROM "//" TO cr
COMMENTS FROM "//" TO lf

 Timing Definition Language (TDL) Specification 1.5 • 19

http://www.ssw.uni-linz.ac.at/Research/Projects/Coco
http://www.ssw.uni-linz.ac.at/Research/Projects/Coco

IGNORE cr + lf + tab

PRODUCTIONS

TDLModule =
 "module" qualIdent "{"
 {"import" {importDecl ";"}} attr /* avoid LL(1) conflict with
 attr */
 {"const" {constDecl ";"} attr}
 {"type" {typeDecl} attr}
 {"sensor" {sensorDecl ";"} attr}
 {"actuator" {actuatorDecl ";"} attr}
 {"output" {portDecl ";"} attr}
 {"task" taskDecl attr}
 {modeDecl}
 ["asynchronous" asyncDecl]
 "}".

qualIdent = identifier {"." identifier}.
attr = ["public"].

importDecl = qualIdent
 ["as" identifier
 | "{" importModule {"," importModule} "}"
].

importModule = identifier ["as" identifier].

constDecl = identifier "=" constExpr.

constExpr = ["-"] number ["." number | identifier]
 | constExprBoolean
 | string
 | constDesignator.

constExprBoolean = "true" | "false".

typeDecl = identifier "="
 (typeDesignator ["[" constExpr "]"] ";"
 | "struct" "{" structScope "}" [";"]
).

structScope = { typeDesignator identifier { "," identifier} ";" }.

sensorDecl = typeDesignator identifier ["uses" extIdent].

actuatorDecl = typeDesignator identifier [initExpr]
 ["uses" extIdent].

initExpr = ":=" constExpr | "init" extIdent.

taskDecl = identifier ["[" [attrName "="] constExpr "]"] "{"
 {"input" {inPortDecl ";"}}
 {"output" {portDecl ";"}}
 {"state" {portDecl ";"}}
 {"uses" {driverAnnotation call ";"}}
 "}".

inPortDecl = typeDesignator identifier.

portDecl = typeDesignator identifier [initExpr].

driverAnnotation = ["[" identifier "]"].

call = extIdent "(" [portDesignator {"," portDesignator }] ")".

modeDecl = ["start"] "mode" identifier
 "[" [attrName "="] constExpr "]"
 "{"
 {"task" {taskInvocation}}
 {"actuator" {actuatorUpdate}}
 {"mode" {modeSwitch}}
 "}".

taskInvocation = frequency guard

Timing Definition Language (TDL) Specification 1.5 • 20

 (taskDesignator inputParams [";"] | sequence).

frequency = "[" [attrName "="] constExpr [slotSelection] "]".

slotSelection = [attrName "="] slotSel.
slotSel = [slotGroup {"|" slotGroup}].
slotGroup = ["~"] constExpr ["-" constExpr] ["*"].

guard = ["if" call "then"].

inputParams = (assignmentList | paramList).
assignmentList = "{" {identifier ":=" portDesignator ";"} "}".
paramList = ["(" [portDesignator {"," portDesignator}] ")"].

sequence = "{"
 taskDesignator inputParams ";"
 {actPortDesignator ":=" portDesignator ";"}
 "}".

actuatorUpdate = frequency guard actPortDesignator ":="
portDesignator ";".

modeSwitch = frequency guard modeDesignator assignModePorts.

assignModePorts = "{"
 { portDesignator ":=" portDesignator ";" }
 "}"
 | ";" .

asyncDecl = "{" {asyncSequence} "}".

asyncSequence = "[" asyncEvent "]" guard
 { IF (IsTask()) taskDesignator inputParams ";"
 | actPortDesignator ":=" portDesignator ";"
 } .

asyncEvent =
 attrName "="
 (IF (IsUpdate()) portDesignator
 | constExpr
)
 ["," attrName "=" constExpr]
 .

designator = identifier {"." identifier}.

/* renamed productions */
attrName = identifier.
unit = identifier.
extIdent = qualIdent.
constDesignator = designator.
typeDesignator = designator.
taskDesignator = designator.
portDesignator = designator.
actPortDesignator = identifier.
modeDesignator = designator.

END tdlc.

Example TDL Modules

Module M1 defines and exports two tasks, one counting up, and one counting
down. Both counters are expected to count modulo 11. Module M2 imports M1
and calculates the sum of the counters of M1, which is supposed to be constant
(initially 10) while M1 is in mode m1, and not constant otherwise. In addition,
there is a periodic asynchronous task invocation that is supposed to watch the
system behavior.

 Timing Definition Language (TDL) Specification 1.5 • 21

M1.tdl
module M1 {

 public const
 c1 = 0; c2 = 10;
 refPeriod = 100ms;

 sensor
 int s uses getS;

 actuator
 int a1 := c1 uses setA1;
 int a2 := c2 uses setA2;

 public task inc [wcet=20ms] {
 output int o := c1;
 uses incImpl(o);
 }

 public task dec [20ms] {
 output int o := c2;
 uses decImpl(o);
 }

 public task watchdog {
 input int i1; int i2;
 uses watchdogImpl(i1, i2);
 }

 start mode m1 [period=refPeriod] {
 task
 [1] inc();
 [1] dec();
 actuator
 [1] a1 := inc.o;
 [1] a2 := dec.o;
 mode
 [1] if switch2m2(s) then m2;
 }

 mode m2 [period=refPeriod] {
 task
 [1] inc();
 [2] dec();
 actuator
 [1] a1 := inc.o;
 [2] a2 := dec.o;
 mode
 [1] if switch2m1(s) then m1;
 }

 asynchronous {
 [timer=1000ms] watchdog(inc.o, dec.o);
 }
}

M2.tdl
module M2 {

 import M1;

 actuator
 int a := M1.c2 uses setA;

 public task sum [wcet=20ms] {
 input int i1; int i2;
 output int o := M1.c2;
 uses sumImpl(i1, i2, o);
 }

 start mode main [period=M1.refPeriod] {
 task
 [1] sum(M1.inc.o, M1.dec.o);
 actuator

Timing Definition Language (TDL) Specification 1.5 • 22

 [1] a := sum.o;
 }
}

Appendix B: Format of .ecode Files

Grammar of .ecode Files
The following attributed EBNF grammar describes the format of .ecode files
generated by the TDL compiler. Note that there is no white space between any
symbols. Integers (int4) are written in big-endian-first byte order, strings are
written as zero terminated character sequences and booleans are encoded as 1
(true) and 0 (false). byte1 is stored as a single byte. Terminal and non-terminal
symbols may contain an optional name attribute written as name: followed by
the structure or value of the symbol. All entities named nofXXX specify the
number of elements of the subsequent list. Byte values are denoted as in Java or
C by using 0x as prefix of the hexadecimal value. Single byte character values
are written under single quotes ('). All time values (e.g. mode period, task wcet,
ecode future delay) are given in microseconds. This means that the maximum
time value is about 35 minutes, if signed 4 byte integers are used by an E-
machine. Slot selection is represented as a string accordingto the slot selection
syntax of TDL.

ECodeFile ::= 'E' 'C' '1' '0' moduleName:string pubKey:int4 moduleKey:int4
 0x80 Imports
 0x81 Constants
 0x82 Types
 0x83 Ports
 0x84 Tasks
 0x85 Drivers
 0x86 Guards
 0x87 Modes
 0x88 Asyncs
 0x89 Ecodes.

Imports ::= nofImports:int4 {moduleName:string pubKey:int4}.

Constants ::= nofConstants:int4 {name:string pub:boolean ConstVal}.

ConstVal ::=
 intConst:0x0 val:int4
 | booleanConst:0x1 val:boolean
 | stringConst:0x2 val:string
 | floatConst:0x3 val:string.

Types ::= nofTypes:int4 {name:string pub:boolean Struct}.

Struct ::=
 alias:0x0 StructRef
 | byte:0x1
 | short:0x2
 | int:0x3
 | long:0x4
 | float:0x5
 | double:0x6
 | boolean:0x7
 | char:0x8
 | array:0x9 length:int4 elemStruct:StructRef

 Timing Definition Language (TDL) Specification 1.5 • 23

 | struct:0xA nofMembers:int4 {name:string pub:boolean StructRef}.

StructRef ::=
 byte:0x1
 | short:0x2
 | int:0x3
 | long:0x4
 | float:0x5
 | double:0x6
 | boolean:0x7
 | char:0x8
 | array:0x9 moduleName:string typeName:string size:int4
 | struct:0xA moduleName:string typeName:string size:int4.

Ports ::= nofPorts:int4
 {name:string pub:boolean StructRef
 (sensor:0x0 (0x0 | 0x1 getter:string driverID:int4)
 | actuator:0x1 Init (0x0 | 0x1 setter:string driverID:int4)
 | input:0x2
 | output:0x3 Init
 | state:0x4 Init
 | ft:0x5
)
 }.

Init ::=
 none:0x0
 | initializer:0x1 initializer:string driverID:int4
 | const:0x2 ConstVal.

Tasks ::= nofTasks:int4
 { name:string pub:boolean wcet:int4
 inPorts:LocalPortList
 outPorts:LocalPortList
 statePorts:LocalPortList
 ftPorts:LocalPortList
 nofUses:int1 {(release:0x0 | exec:0x1) TaskCall}
 }.

LocalPortList ::= nofPorts {portID:int4}.

TaskCall ::= name:string args:LocalPortList.

Drivers ::= nofDrivers:int4
 { init:0x0 portID:int4 initializer:string
 | get:0x1 portID:QualPortID getter:string
 | set:0x2 portID:int4 setter:string
 | actuator:0x3 srcPort:QualPortID actPortID:int4
 | release:0x4 srcPorts:PortList dstPorts:LocalPortList
 | terminate:0x5 taskID:int4
 | switch:0x6 srcPorts:PortList dstPorts:LocalPortList
 }.

QualPortID ::= moduleID:int4 portID:int4.

PortList ::= nofPorts {QualPortID}.

Guards ::= nofGuards:int4 {GuardCall}.

GuardCall ::= name:string args:PortList.

Timing Definition Language (TDL) Specification 1.5 • 24

Modes ::= nofModes:int4
 {name:string start:boolean period:int4 pcBegin:int4 Activities}.

Activities ::=
 nofInvokes:int4
 {freq:int4 slots:string guardID:int4 taskID:int4 releaseDriverID:int4}
 nofSequences:int4
 {freq:int4 slots:string guardID:int4 nofElems:int4
 { (task:0x0 taskID:int4 releaseDriverID:int4
 | actuator:0x1 actuatorDriverID:int4
)
 }
 }
 nofUpdates:int4
 {freq:int4 slots:string guardID:int4 actuatorDriverID:int4}
 nofSwitches:int4
 {freq:int4 slots:string guardID:int4 targetID:int4 switchDriverID:int4}.

Asyncs ::= nofAsyncs:int4 {AsyncEvent guardID:int4 AsyncActs}.

AsyncEvent ::=
 interrupt:0x0 number:int4
 | timer:0x1 period:int4
 | update:0x2 port:QualPortID.

AsyncActs ::= nofAsyncActs:int4 {
 task:0x0 taskID releaseDriverID:int4
 | actuator:0x1 updateDriverID:int4
} .

Ecodes ::= nofEcodes:int4
 {opcode:byte1 arg1:int4 arg2:int4 arg3:int4 comment:string}.

The individual operation codes together with their arguments are specified in the
following table. Unused operands of E-code instructions have value -1, unused
comments in E-code instructions are empty strings. The first argument of the
dummy operation NOP may be used for delimiting sections of the generated
ecode, viz. the end of terminate section (EOT) and the end of the actuator update
section (EOA).

 opcode mnemonic arg1 arg2 arg3

0x0 nop 0=NOP
1=EOT
2=EOA

-1 -1

0x1 future 0 futurePC deltaTime

0x2 call driverID -1 -1

0x3 release taskID -1 -1

0x4 if guardID thenPC elsePC

0x5 jump targetPC -1 -1

0x6 return -1 -1 -1

0x7 switch modeID -1 -1

 Timing Definition Language (TDL) Specification 1.5 • 25

Examples for Decoded .ecode Files
The TDL tool suite provides a decoder utility, which produces the following
output for the example modules defined in Sec. Example TDL Modules.

M1.ecode

MODULE M1 {
 version=10
 pubKey=-2080042151
 key=1605588190
IMPORTS
CONSTS
 public c1 = 0
 public c2 = 10
 public refPeriod = 100000
TYPES
PORTS
 [000] actuator int a1:=0 uses setA1, initDriverID=-1, usesDriverID=3
 [001] actuator int a2:=10 uses setA2, initDriverID=-1, usesDriverID=4
 [002] sensor int s:=null uses getS, initDriverID=-1, usesDriverID=7
 [003] public output int o:=10 uses null, initDriverID=-1, usesDriverID=-1
 [004] public output int o:=0 uses null, initDriverID=-1, usesDriverID=-1
 [005] input int i1:=null uses null, initDriverID=-1, usesDriverID=-1
 [006] input int i2:=null uses null, initDriverID=-1, usesDriverID=-1
TASKS
 [000] public dec, wcet=20000, input, output 3, state
 uses [exec] decImpl 3
 [001] public inc, wcet=20000, input, output 4, state
 uses [exec] incImpl 4
 [002] public watchdog, wcet=0, input 5 6, output, state
 uses [exec] watchdogImpl 5 6
DRIVERS
 [000] tag=terminate, taskID = 0
 [001] tag=terminate, taskID = 1
 [002] tag=terminate, taskID = 2
 [003] tag=set, actPortID=0, uses=setA1
 [004] tag=set, actPortID=1, uses=setA2
 [005] tag=release, assign:
 [006] tag=release, assign:
 [007] tag=get, sensorQID=.2, uses=getS
 [008] tag=actuator, actPortID=0 srcQID=.4
 [009] tag=actuator, actPortID=1 srcQID=.3
 [010] tag=switch, assign:
 [011] tag=release, assign:
 [012] tag=release, assign:
 [013] tag=actuator, actPortID=1 srcQID=.3
 [014] tag=actuator, actPortID=0 srcQID=.4
 [015] tag=switch, assign:
 [016] tag=asyncrelease, assign: 5:=.4 6:=.3
GUARDS
 [000] switch2m2(.2)
 [001] switch2m1(.2)
MODES
 [000] name=m1, start=true, period=100000, pcBegin=3
 task: freq=1, slots=1*, guardID=-1, taskID=1, releaseDriverID=5
 task: freq=1, slots=1*, guardID=-1, taskID=0, releaseDriverID=6
 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=8
 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=9
 mode: freq=1, slots=1*, guardID=0, targetID=1, switchDriverID=10
 [001] name=m2, start=false, period=100000, pcBegin=22
 task: freq=1, slots=1*, guardID=-1, taskID=1, releaseDriverID=11
 task: freq=2, slots=1*, guardID=-1, taskID=0, releaseDriverID=12
 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=14
 actuator: freq=2, slots=1*, guardID=-1, actuatorDriverID=13
 mode: freq=1, slots=1*, guardID=1, targetID=0, switchDriverID=15
ASYNCS
 [000] [timer=1000000, priority=0] taskID=2, driverID=16;
ECODES
 [000] call 3 //actuator init: setA1(a1)
 [001] call 4 //actuator init: setA2(a2)
 [002] return
 [003] call 5 //release task: inc
 [004] release 1 //uses: incImpl

Timing Definition Language (TDL) Specification 1.5 • 26

 [005] call 6 //release task: dec
 [006] release 0 //uses: decImpl
 [007] future 0, 9, 100000
 [008] return
 [009] call 7 //get: s := getS()
 [010] call 1 //terminate task: inc
 [011] call 0 //terminate task: dec
 [012] EOT //end of task terminations
 [013] call 8 //actuator update: a1 := o
 [014] call 3 //actuator setter: setA1(a1)
 [015] call 9 //actuator update: a2 := o
 [016] call 4 //actuator setter: setA2(a2)
 [017] EOA //end of actuator updates
 [018] if 0, 19, 21 //mode switch guard: switch2m2
 [019] call 10 //mode switch driver
 [020] switch 1 //mode switch -> m2:0
 [021] jump 3 //next cycle: m1
 [022] call 11 //release task: inc
 [023] release 1 //uses: incImpl
 [024] call 12 //release task: dec
 [025] release 0 //uses: decImpl
 [026] future 0, 28, 50000
 [027] return
 [028] call 0 //terminate task: dec
 [029] EOT //end of task terminations
 [030] call 13 //actuator update: a2 := o
 [031] call 4 //actuator setter: setA2(a2)
 [032] EOA //end of actuator updates
 [033] call 12 //release task: dec
 [034] release 0 //uses: decImpl
 [035] future 0, 37, 50000
 [036] return
 [037] call 7 //get: s := getS()
 [038] call 1 //terminate task: inc
 [039] call 0 //terminate task: dec
 [040] EOT //end of task terminations
 [041] call 14 //actuator update: a1 := o
 [042] call 3 //actuator setter: setA1(a1)
 [043] call 13 //actuator update: a2 := o
 [044] call 4 //actuator setter: setA2(a2)
 [045] EOA //end of actuator updates
 [046] if 1, 47, 49 //mode switch guard: switch2m1
 [047] call 15 //mode switch driver
 [048] switch 0 //mode switch -> m1:0
 [049] jump 22 //next cycle: m2
}

M2.ecode

MODULE M2 {
 version=10
 pubKey=1184433608
 key=606345388
IMPORTS
 [000] moduleName=M1, pubKey=-2080042151
CONSTS
TYPES
PORTS
 [000] actuator int a:=10 uses setA, initDriverID=-1, usesDriverID=1
 [001] input int i1:=null uses null, initDriverID=-1, usesDriverID=-1
 [002] input int i2:=null uses null, initDriverID=-1, usesDriverID=-1
 [003] public output int o:=10 uses null, initDriverID=-1, usesDriverID=-1
TASKS
 [000] public sum, wcet=20000, input 1 2, output 3, state
 uses [exec] sumImpl 1 2 3
DRIVERS
 [000] tag=terminate, taskID = 0
 [001] tag=set, actPortID=0, uses=setA
 [002] tag=release, assign: 1:=0.4 2:=0.3
 [003] tag=actuator, actPortID=0 srcQID=.3
GUARDS
MODES
 [000] name=main, start=true, period=100000, pcBegin=2
 task: freq=1, slots=1*, guardID=-1, taskID=0, releaseDriverID=2

 Timing Definition Language (TDL) Specification 1.5 • 27

 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=3
ASYNCS
ECODES
 [000] call 1 //actuator init: setA(a)
 [001] return
 [002] call 2 //release task: sum
 [003] release 0 //uses: sumImpl
 [004] future 0, 6, 100000
 [005] return
 [006] call 0 //terminate task: sum
 [007] EOT //end of task terminations
 [008] call 3 //actuator update: a := o
 [009] call 1 //actuator setter: setA(a)
 [010] EOA //end of actuator updates
 [011] jump 2 //next cycle: main
}

Appendix C: Functionality Code

Examples for Java-based Functionality Code
The functionality code for the example modules in Sec. Example TDL Modules
can be specified in any programming language supported by the E-machine
being used for exeution of TDL programs. The following code examples assume
that a Java-based E-machine is used and therefore the functionality code is
written in Java following the Java language binding rules of TDL.

M1.java
import com.preetec.tdl.tools.emachine.types.ref_int;
import com.preetec.tdl.tools.emachine.Out;

class M1 {

 static int getS() {
 return 0;
 }

 static void setA1(int a1) {
 Out.println("a1 = " + a1);
 }

 static void setA2(int a2) {
 Out.println("a2 = " + a2);
 }

 static void incImpl(ref_int x) {
 int h = x.val + 1;
 x.val = h <= 10? h: 0;
 }

 static void decImpl(ref_int x) {
 int h = x.val - 1;
 x.val = h >= 0? h: 10;
 }

 static void watchdogImpl(int i1, int i2) {
 Out.println(“i1=” + i1 + “, i2=” + i2);
 }

 static boolean switch2m2(int s) {
 return (s == 2);
 }

 static boolean switch2m1(int s) {
 return (s == 1);
 }
}

Timing Definition Language (TDL) Specification 1.5 • 28

M2.java
import com.preetec.tdl.tools.emachine.types.ref_int;
import com.preetec.tdl.tools.emachine.Out;

class M2 {

 static void setA(int a) {
 Out.println("a = " + a);
 }

 static void sumImpl(int i0, int i1, ref_int o) {
 o.val = i0 + i1;
 }
}

Examples for Generated Glue Code
The following programs show the auxiliary Java code generated for the modules.
For every module there is one outer class, which consists of 3 sections: ports,
drivers, and guards and provides the table of drivers and the table of guards to
the E-machine interpreter. In addition it implements the interface ModuleBase.
There is an additional Java class per node called NodeAsyncs$$.java. This class
implements the glue code required for dealing with asynchronous activities.

In principle, a Java based E-machine could also work without this class by
falling back to a reflection-based mechanism, which is, however, much slower,
requires dynamic memory, and requires the reflection API to be available.

The presented Java code is strongly dependent on a particular E-machine
implementation and subject to change at any time. It is shown here only as an
example of glue code that might inspire implementations of other E-machines
and it shows that the E-machine, glue code, and functionality code work together
in a systematic way.

M1$.java

import com.preetec.tdl.tools.emachine.types.*;

/**
 * This class has been generated automatically by tdlc -java on
 * Thu Aug 28 15:40:59 CEST 2008 from TDL module 'M1'.
 * Compile this file with a Java compiler and make the generated .class
 * files available to the Java based E-machine in order to speed up
 * execution. Do not modify this file.
 */
public class M1$ implements com.preetec.tdl.tools.emachine.ModuleBase {

 private static com.preetec.tdl.tools.emachine.Module module$;
 public static final com.preetec.tdl.tools.emachine.Drivers drivers$ = new Drivers$();
 public static final com.preetec.tdl.tools.emachine.Guards guards$ = new Guards$();
 public static final com.preetec.tdl.tools.emachine.SDrivers sdrivers$ = new SDrivers$();

 //ports
 private static int port$0; //actuator a1
 private static int port$1; //actuator a2
 private static int port$2; //sensor s
 private static int port$2_tick = -1;
 public static int port$3; //output dec.o
 public static ref_int port$3_phy = new ref_int(); //physical output dec.o
 public static int port$4; //output inc.o
 public static ref_int port$4_phy = new ref_int(); //physical output inc.o
 private static int port$5; //input watchdog.i1
 private static int port$6; //input watchdog.i2
 static {
 port$0 = 0;
 port$1 = 10;
 port$3 = 10;
 port$3_phy.val = 10;
 port$4 = 0;

 Timing Definition Language (TDL) Specification 1.5 • 29

 port$4_phy.val = 0;
 }

 private static class Drivers$
 implements com.preetec.tdl.tools.emachine.Drivers {
 public void call(int id) throws Exception {
 int ticks;
 switch (id) {
 case 0: //terminate task dec
 port$3 = port$3_phy.val;
 break;
 case 1: //terminate task inc
 port$4 = port$4_phy.val;
 break;
 case 2: //terminate async task watchdog
 com.preetec.tdl.tools.emachine.Interpreter.asyncDriverID = 2;
 com.preetec.tdl.tools.emachine.Interpreter.asyncDrivers = this;
 com.preetec.tdl.tools.emachine.Interpreter.asyncDrivers = null;
 break;
 case 3: //set a1
 M1.setA1(port$0);
 break;
 case 4: //set a2
 M1.setA2(port$1);
 break;
 case 5: //release task inc
 break;
 case 6: //release task dec
 break;
 case 7: //get s
 ticks = (int)com.preetec.tdl.tools.emachine.Interpreter.ticks;
 if (port$2_tick != ticks) {
 port$2 = M1.getS();
 port$2_tick = ticks;
 }
 break;
 case 8: //actuator update a1
 port$0 = port$4;
 break;
 case 9: //actuator update a2
 port$1 = port$3;
 break;
 case 10: //mode switch to m2
 break;
 case 11: //release task inc
 break;
 case 12: //release task dec
 break;
 case 13: //actuator update a2
 port$1 = port$3;
 break;
 case 14: //actuator update a1
 port$0 = port$4;
 break;
 case 15: //mode switch to m1
 break;
 case 16: //async release task watchdog
 do {
 com.preetec.tdl.tools.emachine.Interpreter.executed = false;
 port$5 = port$4;
 port$6 = port$3;
 } while (com.preetec.tdl.tools.emachine.Interpreter.executed);
 break;
 default: throw new IllegalArgumentException("invalid id:" + id);
 }
 }
 }

 private static class Guards$
 implements com.preetec.tdl.tools.emachine.Guards {
 public boolean eval(int id) throws Exception {
 switch (id) {
 case 0:
 return M1.switch2m2(port$2);
 case 1:

Timing Definition Language (TDL) Specification 1.5 • 30

 return M1.switch2m1(port$2);
 default: throw new IllegalArgumentException("invalid id:" + id);
 }
 }
 }

 private static class SDrivers$
 implements com.preetec.tdl.tools.emachine.SDrivers {
 public void call(int id) throws Exception {
 switch (id) {
 case 0: //start task dec
 M1.decImpl(port$3_phy);
 break;
 case 1: //start task inc
 M1.incImpl(port$4_phy);
 break;
 case 2: //start task watchdog
 M1.watchdogImpl(port$5, port$6);
 break;
 default: throw new IllegalArgumentException("invalid id:" + id);
 }
 }
 }

 //implement ModuleBase
 public void init(com.preetec.tdl.tools.emachine.Module m) {module$ = m;}
 public int getKey() {return 1605588190;}
 public com.preetec.tdl.tools.emachine.Drivers getDrivers() {return drivers$;}
 public com.preetec.tdl.tools.emachine.Guards getGuards() {return guards$;}
 public com.preetec.tdl.tools.emachine.SDrivers getSDrivers() {return sdrivers$;}
}

M2$.java

import com.preetec.tdl.tools.emachine.types.*;

/**
 * This class has been generated automatically by tdlc -java on
 * Thu Aug 28 15:40:59 CEST 2008 from TDL module 'M2'.
 * Compile this file with a Java compiler and make the generated .class
 * files available to the Java based E-machine in order to speed up
 * execution. Do not modify this file.
 */
public class M2$ implements com.preetec.tdl.tools.emachine.ModuleBase {

 private static com.preetec.tdl.tools.emachine.Module module$;
 public static final com.preetec.tdl.tools.emachine.Drivers drivers$ = new Drivers$();
 public static final com.preetec.tdl.tools.emachine.Guards guards$ = new Guards$();
 public static final com.preetec.tdl.tools.emachine.SDrivers sdrivers$ = new SDrivers$();

 //ports
 private static int port$0; //actuator a
 private static int port$1; //input sum.i1
 private static int port$2; //input sum.i2
 public static int port$3; //output sum.o
 public static ref_int port$3_phy = new ref_int(); //physical output sum.o
 static {
 port$0 = 10;
 port$3 = 10;
 port$3_phy.val = 10;
 }

 private static class Drivers$
 implements com.preetec.tdl.tools.emachine.Drivers {
 public void call(int id) throws Exception {
 int ticks;
 switch (id) {
 case 0: //terminate task sum
 port$3 = port$3_phy.val;
 break;
 case 1: //set a
 M2.setA(port$0);
 break;
 case 2: //release task sum

 Timing Definition Language (TDL) Specification 1.5 • 31

 port$1 = M1$.port$4;
 port$2 = M1$.port$3;
 break;
 case 3: //actuator update a
 port$0 = port$3;
 break;
 default: throw new IllegalArgumentException("invalid id:" + id);
 }
 }
 }

 private static class Guards$
 implements com.preetec.tdl.tools.emachine.Guards {
 public boolean eval(int id) throws Exception {
 switch (id) {
 default: throw new IllegalArgumentException("invalid id:" + id);
 }
 }
 }

 private static class SDrivers$
 implements com.preetec.tdl.tools.emachine.SDrivers {
 public void call(int id) throws Exception {
 switch (id) {
 case 0: //start task sum
 M2.sumImpl(port$1, port$2, port$3_phy);
 break;
 default: throw new IllegalArgumentException("invalid id:" + id);
 }
 }
 }

 //implement ModuleBase
 public void init(com.preetec.tdl.tools.emachine.Module m) {module$ = m;}
 public int getKey() {return 606345388;}
 public com.preetec.tdl.tools.emachine.Drivers getDrivers() {return drivers$;}
 public com.preetec.tdl.tools.emachine.Guards getGuards() {return guards$;}
 public com.preetec.tdl.tools.emachine.SDrivers getSDrivers() {return sdrivers$;}
}

NodeAsyncs$$.java
/**
 * This class has been generated automatically by tdlc -java on
 * Thu Aug 28 15:40:59 CEST 2008 .
 * Compile this file with a Java compiler and make the generated .class
 * file available to the Java based E-machine. Do not modify this file.
 */
public class NodeAsyncs$$ {

 //runtime data structure for AsyncSequence
 private static class AsyncSequenceDesc {
 public boolean pending;
 public int priority;
 public AsyncSequenceDesc(int priority) {
 this.priority = priority;
 }
 }

 //table of all AsyncSequenceDescs
 private static AsyncSequenceDesc[] asTable = new AsyncSequenceDesc[1];
 static {
 asTable[0] = new AsyncSequenceDesc(0);
 }

 //add to priority queue unless it is already in queue
 public static void enqueue(int idx) {
 asTable[idx].pending = true;
 asyncThread.interrupt();
 }

 //remove from priority queue
 private static int dequeue() {
 int maxPriority = -1;
 int maxPriorityIndex = -1;

Timing Definition Language (TDL) Specification 1.5 • 32

 for (int i = 0; i < 1; i++) {
 AsyncSequenceDesc as = asTable[i];
 if (as.pending && as.priority > maxPriority) {
 maxPriority = as.priority;
 maxPriorityIndex = i;
 }
 }
 if (maxPriorityIndex >= 0) {
 asTable[maxPriorityIndex].pending = false;
 }
 return maxPriorityIndex;
 }
 private static void startTimerThread(final int period) {
 Thread t = new Thread() {
 public void run() {
 for (;;) {
 try {
 switch (period) {
 case 1000000:
 enqueue(0);
 Thread.sleep(1000);
 break;
 }
 } catch (InterruptedException x) {}
 }
 }
 };
 t.setPriority(Thread.MIN_PRIORITY);
 t.setDaemon(true);
 t.start();
 }

 static {
 startTimerThread(1000000);
 }

 //execute an AsyncSequence
 private static void executeAsyncSequence (int n) throws Exception {
 switch (n) {
 case 0:
 M1$.drivers$.call(16);
 M1$.sdrivers$.call(2);
 M1$.drivers$.call(2);
 break;
 }
 }

 private static Thread asyncThread = new Thread() {
 public void run() {
 for (;;) {
 int next = dequeue();
 if (next >= 0) {
 try {
 executeAsyncSequence(next);
 } catch (Exception x) {
 x.printStackTrace();
 }
 } else {
 try {Thread.sleep(10);}
 catch (InterruptedException x) {}
 }
 }
 }
 };
 static {
 asyncThread.setPriority(Thread.MIN_PRIORITY);
 asyncThread.setDaemon(true);
 asyncThread.start();
 }
}

 Timing Definition Language (TDL) Specification 1.5 • 33

	Timing Definition Language (TDL) Specification 1.5
	Abstract
	Introduction
	Relation to Giotto
	Acknowledgements

	Lexical Structure
	White Space and Line Separators
	Comments
	Identifiers
	Keywords and Operators
	Literals

	Syntactical Structure
	Module
	Import Declaration
	Constant Declaration
	Type Declaration
	Sensor Declaration
	Actuator Declaration
	Output Declaration
	Task Declaration
	Mode Declaration
	Task Invocation
	Actuator Update
	Task Sequence
	Mode Switch

	Asynchronous Declarations

	Distribution
	Language Bindings
	Java
	Naming Conventions
	Type Mapping

	ANSI-C
	Module Initialization
	Functionality Code
	Naming Conventions
	Type Mapping
	Parameter Passing

	TDL Version History
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1

	Differences to Giotto
	Syntactical Differences
	Semantical Differences
	Tool Related Differences

	References
	Appendix A: TDL Grammar
	Complete EBNF Grammar
	Example TDL Modules
	M1.tdl
	M2.tdl

	Appendix B: Format of .ecode Files
	Grammar of .ecode Files
	Examples for Decoded .ecode Files
	M1.ecode
	MODULE M1 { version=10 pubKey=-2080042151 key=1605588190 IMPORTS CONSTS public c1 = 0 public c2 = 10 public refPeriod = 100000 TYPES PORTS [000] actuator int a1:=0 uses setA1, initDriverID=-1, usesDriverID=3 [001] actuator int a2:=10 uses setA2, initDriverID=-1, usesDriverID=4 [002] sensor int s:=null uses getS, initDriverID=-1, usesDriverID=7 [003] public output int o:=10 uses null, initDriverID=-1, usesDriverID=-1 [004] public output int o:=0 uses null, initDriverID=-1, usesDriverID=-1 [005] input int i1:=null uses null, initDriverID=-1, usesDriverID=-1 [006] input int i2:=null uses null, initDriverID=-1, usesDriverID=-1 TASKS [000] public dec, wcet=20000, input, output 3, state uses [exec] decImpl 3 [001] public inc, wcet=20000, input, output 4, state uses [exec] incImpl 4 [002] public watchdog, wcet=0, input 5 6, output, state uses [exec] watchdogImpl 5 6 DRIVERS [000] tag=terminate, taskID = 0 [001] tag=terminate, taskID = 1 [002] tag=terminate, taskID = 2 [003] tag=set, actPortID=0, uses=setA1 [004] tag=set, actPortID=1, uses=setA2 [005] tag=release, assign: [006] tag=release, assign: [007] tag=get, sensorQID=.2, uses=getS [008] tag=actuator, actPortID=0 srcQID=.4 [009] tag=actuator, actPortID=1 srcQID=.3 [010] tag=switch, assign: [011] tag=release, assign: [012] tag=release, assign: [013] tag=actuator, actPortID=1 srcQID=.3 [014] tag=actuator, actPortID=0 srcQID=.4 [015] tag=switch, assign: [016] tag=asyncrelease, assign: 5:=.4 6:=.3 GUARDS [000] switch2m2(.2) [001] switch2m1(.2) MODES [000] name=m1, start=true, period=100000, pcBegin=3 task: freq=1, slots=1*, guardID=-1, taskID=1, releaseDriverID=5 task: freq=1, slots=1*, guardID=-1, taskID=0, releaseDriverID=6 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=8 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=9 mode: freq=1, slots=1*, guardID=0, targetID=1, switchDriverID=10 [001] name=m2, start=false, period=100000, pcBegin=22 task: freq=1, slots=1*, guardID=-1, taskID=1, releaseDriverID=11 task: freq=2, slots=1*, guardID=-1, taskID=0, releaseDriverID=12 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=14 actuator: freq=2, slots=1*, guardID=-1, actuatorDriverID=13 mode: freq=1, slots=1*, guardID=1, targetID=0, switchDriverID=15 ASYNCS [000] [timer=1000000, priority=0] taskID=2, driverID=16; ECODES [000] call 3 //actuator init: setA1(a1) [001] call 4 //actuator init: setA2(a2) [002] return [003] call 5 //release task: inc [004] release 1 //uses: incImpl [005] call 6 //release task: dec [006] release 0 //uses: decImpl [007] future 0, 9, 100000 [008] return [009] call 7 //get: s := getS() [010] call 1 //terminate task: inc [011] call 0 //terminate task: dec [012] EOT //end of task terminations [013] call 8 //actuator update: a1 := o [014] call 3 //actuator setter: setA1(a1) [015] call 9 //actuator update: a2 := o [016] call 4 //actuator setter: setA2(a2) [017] EOA //end of actuator updates [018] if 0, 19, 21 //mode switch guard: switch2m2 [019] call 10 //mode switch driver [020] switch 1 //mode switch -> m2:0 [021] jump 3 //next cycle: m1 [022] call 11 //release task: inc [023] release 1 //uses: incImpl [024] call 12 //release task: dec [025] release 0 //uses: decImpl [026] future 0, 28, 50000 [027] return [028] call 0 //terminate task: dec [029] EOT //end of task terminations [030] call 13 //actuator update: a2 := o [031] call 4 //actuator setter: setA2(a2) [032] EOA //end of actuator updates [033] call 12 //release task: dec [034] release 0 //uses: decImpl [035] future 0, 37, 50000 [036] return [037] call 7 //get: s := getS() [038] call 1 //terminate task: inc [039] call 0 //terminate task: dec [040] EOT //end of task terminations [041] call 14 //actuator update: a1 := o [042] call 3 //actuator setter: setA1(a1) [043] call 13 //actuator update: a2 := o [044] call 4 //actuator setter: setA2(a2) [045] EOA //end of actuator updates [046] if 1, 47, 49 //mode switch guard: switch2m1 [047] call 15 //mode switch driver [048] switch 0 //mode switch -> m1:0 [049] jump 22 //next cycle: m2 }
	M2.ecode
	MODULE M2 { version=10 pubKey=1184433608 key=606345388 IMPORTS [000] moduleName=M1, pubKey=-2080042151 CONSTS TYPES PORTS [000] actuator int a:=10 uses setA, initDriverID=-1, usesDriverID=1 [001] input int i1:=null uses null, initDriverID=-1, usesDriverID=-1 [002] input int i2:=null uses null, initDriverID=-1, usesDriverID=-1 [003] public output int o:=10 uses null, initDriverID=-1, usesDriverID=-1 TASKS [000] public sum, wcet=20000, input 1 2, output 3, state uses [exec] sumImpl 1 2 3 DRIVERS [000] tag=terminate, taskID = 0 [001] tag=set, actPortID=0, uses=setA [002] tag=release, assign: 1:=0.4 2:=0.3 [003] tag=actuator, actPortID=0 srcQID=.3 GUARDS MODES [000] name=main, start=true, period=100000, pcBegin=2 task: freq=1, slots=1*, guardID=-1, taskID=0, releaseDriverID=2 actuator: freq=1, slots=1*, guardID=-1, actuatorDriverID=3 ASYNCS ECODES [000] call 1 //actuator init: setA(a) [001] return [002] call 2 //release task: sum [003] release 0 //uses: sumImpl [004] future 0, 6, 100000 [005] return [006] call 0 //terminate task: sum [007] EOT //end of task terminations [008] call 3 //actuator update: a := o [009] call 1 //actuator setter: setA(a) [010] EOA //end of actuator updates [011] jump 2 //next cycle: main }

	Appendix C: Functionality Code
	Examples for Java-based Functionality Code
	M1.java
	M2.java

	Examples for Generated Glue Code

