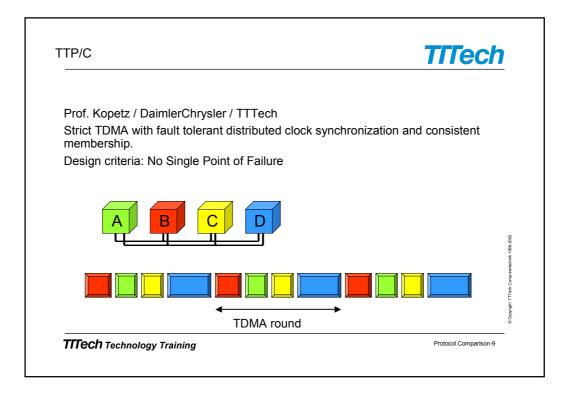
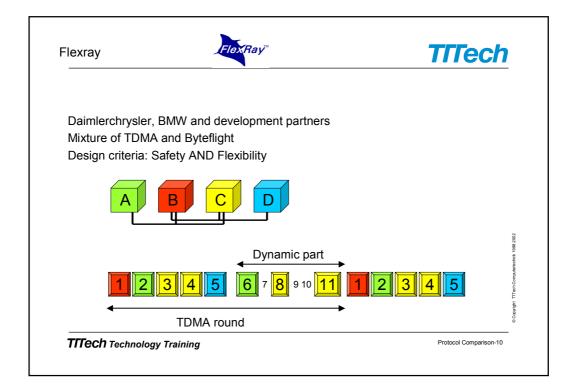


Byteflight: each node is assigned a set of cluster-wide ur use for transmission (same as for CAN, but 8 bits per ID). minislotting rounds with a SYNC pulse every 250 microse	A master starts a
For each ID value a minislot counter runs on all nodes; du owner of ID "x" must send ("static telegrams") or can send telegrams"). Unused IDs or IDs from failed nodes result in (depends on propagation delays, ca. 1-2 μ s), while used I transmission of a telegram from one node.	l ("dynamic short minislots
Except for telegram "1", the exact time of transmission in a unknown; the protocol is event-triggered, protocol error co provided by an intelligent star coupler node.	
Composability is based on the idea of "fast oversampling" not have (need?) information about the exact communicat communication errors.	· · · ·





rotocol Groups	TITecl
Class A, -20 kbit/s: LIN, L-CAN	
Class B, 50-500 kbit/s: CAN, J1850	
MMedia, > 20 Mbit/s: MOST, Firewire	
Wireless: GSM, Bluetooth	
Safety: Byteflight, TTP/C, Flexray	
Tech Technology Training	Protocol Comparison-7

yteflight byteflight	TITech
BMW, already in production in the ISIS safety sys	stem
Minislotting (round oriented), telegrams with iden application data	tifiers and 1-12 bytes of
Global SYNC-Pulse (time-base) by Clock Master	
A B C	
S N C 1 2 3 4 5 6 7	s Y c
4 250 μs	
	Protocol Comparison-8

"Typical Ap	plication" (real or presented):
CAN:	any embedded network with 2-10 ECUs, soft real-time requirements and loop times of 5-50 milliseconds
Byteflight:	airbag inflation system with ca. 12 ECUs and fast response time requirements
Flexray:	brake-by-wire (concept shown) with safety requirements
TTP/C:	x-by-wire system (e.g. "FILO car", avionics safety systems) with 4-32 ECUs and high safety requirements

Physical Lag	ver and Topology:
CAN:	up to 1 Mbit/s over twisted pair (ISO 11898-2), bus (star)
Byteflight:	10 Mbit/s over plastic optical fiber, star
Flexray:	up to 10 Mbit/s, twisted pair/bus or star, optical fiber/star
TTP/C:	up to 2 Mbit/s over twisted pair (ISO 11898-2), bus or star up to 5 Mbit/s over twisted pair (RS-485), bus or star up to 5 Mbit/s over optical fiber, star 25 Mbit/s over Ethernet PHY (100BaseT/F), star 1 Gbit/s over Ethernet (research project), star
	the lack of any priority based arbitration, TTP/C is the only protocol ndle long propagation delays efficiently, e.g., in multi-star s.

Packet Size,	Protocol Overhead and typical efficiency:
CAN:	- 8 bytes, ca 4-6 bytes overhead (message identifier/size, start/stop/stuff bits, message CRC), ca. 25-35% typ. efficiency
Byteflight:	- 12 bytes, ca. 4 bytes overhead (message identifier/size, message CRC) plus start/stop/stuff bits, no data available
Flexray:	- 12 or -246 bytes, ca. 4 - 8 bytes overhead (message identifier/size, message CRC) plus start/stop/stuff bits?
TTP/C:	- 240 bytes, ca. 4 bytes overhead (frame header 4-8 bit, frame CRC 24 bit) plus inter-frame gap, ca. 60-80% typ. efficiency
	riggered protocols do not need identifiers on the protocol level, be implemented (with any size) on a higher level if needed.

Protocol Se	rvices (in addition to message multicast and checksum):
CAN:	acknowledgement bit and immediate retransmission (not safe for real-time systems)
Byteflight:	SYNC pulse "clock" from master node as global time-tick
Flexray:	distributed clock synchronization (state + rate correction), bus guardian for TDMA transmissions
TTP/C:	distributed clock synchronization (verified), consistent membership and clique detection, consistent broadcast, implicit (=efficient!) acknowledgement, consistent mode changes, transparent shadowing ("hot spares"), bus guardian for all transmissions

Fault Hypothesis and Fault Tolerance Strategy:	
CAN:	"tolerates" communication fault by retransmission, no error containment or support for higher level fault tolerance
Byteflight:	optical physical layer and fast retransmission, error containment by star coupler is application specific
Flexray:	TDMA slot scheme protected by node local bus guardians, no error containment for "dynamic" part
TTP/C:	"single fault" hypothesis, strong error containment by bus guardian, full predictability allows maximal error containment. Formal verification for core mechanisms of the protocol.

System Des	ign Guidelines for Safety Related Applications:
CAN:	not intended for safe systems, redundancy and fault to lerance are very difficult to achieve if at all
Byteflight:	passive safety (for fail-safe systems) possible with intelligent star coupler (application responsibility)
Flexray:	mixed-channel architecture intended for electronic replacement of current two-way hydraulic braking systems no concepts for other safety related applications known
TTP/C:	time-triggered architecture (TTA) systematically deals with fault tolerant units and replica determinism, fail-silence, composability (reduces probability for design faults!)

Availability	and Support:
CAN:	world standard for automotive electronics
Byteflight:	components available, development tools unknown/not widely available, used by BMW. <u>www.byteflight.com</u>
Flexray:	under development, supported by Flexray-Group (Daimler- Chrysler, BMW, Motorola, Philips) <u>www.flexray-group.com</u>
TTP/C:	components available, development tools available from TTTech, used by several automotive and aerospace development groups (e.g., Audi, Honeywell). <u>www.ttagroup.org, www.tttech.com</u>