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SUMMARY

Multiprotein complexes govern virtually all cellular
processes. Their 3D structures provide important
clues to their biological roles, especially through
structural correlations among protein molecules
and complexes. The detection of such correla-
tions generally requires comprehensive searches
in databases of known protein structures by
means of appropriate structure-matching tech-
niques. Here, we present a high-speed structure
search engine capable of instantly matching large
protein oligomers against the complete and up-to-
date database of biologically functional assemblies
of protein molecules. We use this tool to reveal
unseen structural correlations on the level of
protein quaternary structure and demonstrate its
general usefulness for efficiently exploring com-
plex structural relationships among known protein
assemblies.

INTRODUCTION

Molecular complexes of interacting protein chains are funda-

mental for virtually all biological processes. Their role as func-

tional and evolutionary units is evident since the early days of

structural biology, when the first 3D structures of proteins

uncovered initial examples of how multiple protein chains asso-

ciate (Perutz et al., 1960; Bolton and Perutz, 1970; Birktoft and

Blow, 1972). Advances in structure determination techniques

and the pipelines of structural genomics projects have pro-

moted the acquisition of atomic coordinates of macromolecular

assemblies, providing the community with a plethora of struc-

tures of ever-growing size and complexity (Dutta and Berman,

2005; Berman et al., 2013; Furnham et al., 2013; Wagner and

Chiu, 2013). Among the results of these efforts are acclaimed

structure determinations of multiprotein complexes like that of

RNA polymerase (Cramer et al., 2001; Gnatt et al., 2001) or

the ribosome (Carter et al., 2000; Ban et al., 2000; Schluenzen

et al., 2000), and it is fair to expect that many more of the
ambitious targets of structural biology will be resolved (Bhatta-

charya, 2009).

Knowledge of the structure of a protein complex to atomic

scale is generally of high value for understanding its biological

role. However, it is usually of limited use to investigate the coor-

dinates of a structure without interpretation against the back-

ground of other known structures. Indeed, comparison and

classification of protein structures frequently reveal information

on the biological roles, chemical functions, and evolutionary re-

lationships of proteins that is difficult to obtain from experiment.

The detection of structure matches on the level of whole-protein

complexes is particularly informative, because proteins gener-

ally assemble to multichain complexes that act and evolve as

functional units. Consequently, tools to efficiently and accurately

compare multiprotein complexes against all known structures

are essential for the investigation of protein structure, function,

and evolution (Sippl and Wiederstein, 2012).

Database searches of proteins are customarily carried out

either on the sequence level (Altschul et al., 1997; Remmert

et al., 2012; Frank et al., 2010) or on the level of single-chain

structures (Hasegawa and Holm, 2009). Both strategies are

only partly capable of detecting structural correlations among

multichain complexes. Sequence search methods, although

fast, struggle with the fact that highly similar structures may

have virtually no detectable sequence similarity (Flaherty et al.,

1991), and with the indeterminacy of chain order in oligomers.

Most importantly, the relative spatial orientation of the chains

cannot be captured by sequence search methods, a problem

that is obviously shared with single-chain structure comparison

methods.Recently,we reported ona tool for the efficient pairwise

comparison of large macromolecular complexes (Sippl andWie-

derstein, 2012). Here we extend this tool and present a structure

search engine that efficiently sorts all known biological assem-

blies of protein structures according to their structural similarity

to a given query. We exemplify a number of key features of the

presented method and illustrate its application in the structure-

based characterization of multiprotein complexes. In particular,

we search for structures matching a protein of unknown function

from the pathogen Salmonella typhimurium and find significant

matches on the level of quaternary structure that are concealed

on the level of tertiary structure. Furthermore, we apply the pre-

sented technique in the comparative analysis of DNA clamps

and report hitherto undetected structural correlations.
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RESULTS

A Structure Search on the Level of Multiprotein
Complexes Reveals Significant Structural Correlations
that Are Undetectable on the Level of Single Chains
The identification of structure similarities among proteins

frequently reveals important relationships on the level of chemi-

cal function, biological role, and evolutionary kinship. Structural

matches of biological assemblies provide particularly relevant in-

formation, because they imply similarities between the biologi-

cally active forms of the respective proteins. We first illustrate

the use of biological assemblies in the structure-based charac-

terization of newly determined protein structures, using the

example of a cytoplasmic protein of unknown function from

the pathogenic bacterium S. typhimurium. The structure of this

protein has been determined by X-ray crystallography and

deposited in the Protein Data Bank (PDB) (ID code: 2GJV) in

the course of the Protein Structure Initiative. The authors of

this structure, assisted by the PISA software (Krissinel and Hen-

rick, 2007), determined two ring-like biological assemblies for

this protein, a homohexameric assembly (2gjv@1, the ‘‘@1’’

postfix denotes the first assembly listed in the PDB file; see

Experimental Procedures) and a homododecameric assembly

(2gjv@2).

The main result of the search procedure described here is a

ranked target list that represents the complete repertoire of

known structures ordered in terms of similarity to the query

structure. On the level of biological assemblies, a structure

search with hexameric 2gjv@1 identifies about 780 targets with

a structure similarity score, S, above the threshold of S+ =

100.0 (Experimental Procedures). The top ranked of these tar-

gets are either from bacteriophages or bacteria and assemble

to hexameric rings. Based on the high similarity of these rings,

an intriguing structure/function relationship between proteins

from the bacterial type VI secretion system and tail proteins of

bacteriophages has been described previously (Kanamaru,

2009; Leiman et al., 2009; Pell et al., 2009; Sippl andWiederstein,

2012). Notably, the high similarities among the multichain rings

do not necessarily coincide with high similarities of the

respective constituent subunits. For instance, 2gjv@1 perfectly

matches the inner ring of secretory protein Hcp3 from the path-

ogenic bacterium Pseudomonas aeruginosa (3he1@1; Osipiuk

et al., 2011; Figure 1A). Hcp3 is paralogous to Hcp1, which is

part of the bacterium’s type VI secretion system. The match

yields a structure similarity scoreS of 292.2, which clearly stands

out from the bulk of random correlations (Figure 1A, middle). In

contrast, the structure alignment of the individual monomers

that build up the respective assemblies produces a score of

56.7, which reports a rather insignificant similarity when related

to the entirety of scores (S+ = 79.0). In fact, a structure search

with chain A of 2gjv against all known protein chains shows

that there are tens of thousands of hits with a similarity S >

56.7 (Figure 1B, middle). Only a few of them form ring-like hex-

amers, and their detection is only possible with a structure

search on the level of biological assemblies.

In the structure searches of the previous example, the search

database comprised the complete set of known protein struc-

tures. As delineated in the Experimental Procedures, search

time can be saved by using a nonredundant set of representative
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structures instead. However, we have to ensure that this strategy

does not entail any loss of significant structure matches. Figure 2

compares the distributions of structure similarity scores ob-

tained from an exhaustive search and a search against a subset

of representative structures. A choice of Sr = 90% (Experimental

Procedures) leads to a 3-fold reduction of search database size

and, consequently, to a considerable gain in search speed.

Importantly, the shapes and characteristics of the distributions

are rather robust with respect to the removal of redundancy. In

particular, their mean values and SDs are practically identical, re-

sulting in a proper assignment of S+. Thus, all key information for

the identification of significant structure matches is retained.

Test searches with 20,000 randomly chosen query structures

confirmed that this is a general feature of the resulting distribu-

tions and independent of any specifics of the queries.

Comparative Structure Analysis of DNA Clamps
DNA clamps are oligomeric components of the DNA polymerase

holoenzyme that serve as processivity-promoting factors in DNA

replication. Despite different subunit stoichiometries and high

sequence diversity, their ring-shaped structures are highly

conserved throughout all kingdoms of life (Kuriyan and O’Don-

nell, 1993; Bruck and O’Donnell, 2001; Indiani and O’Donnell,

2006; Sippl and Wiederstein, 2012). Our aim here is to take a

typical bacterial DNA clamp as a starting point from which we

explore the structural correlations to all other protein structures

presently known.

Our query structure is the dimeric b subunit of polymerase III

from Escherichia coli (PDB ID code: 2POL; Kong et al., 1992).

The active molecule is a ring-shaped homodimer that is fully rep-

resented by the biological assembly 2pol@1. Each monomer

contains three domains. The 3D structures of these domains

are similar, but their sequences are uncorrelated (Sippl and Wie-

derstein, 2012). The ring has exact two-fold symmetry as a

consequence of dimer assembly and an approximate six-fold

symmetry that is due to the individual domains.

Figure 3 plots the ranks and S scores for the top 1,100 hits of a

structure search with 2pol@1 and shows schematic drawings of

the query and five high-scoring targets that are discussed in

more detail below. The structure similarities of the top hits rapidly

decrease to a score ofS� 100 and then stay rather constant. For

this search, the structure similarity threshold S+ is 75.1, resulting

in around 820 targets that have a score above S+.

The top 45 ranks are exclusively occupied by dimeric bacterial

polymerase III b subunits whose close evolutionary distance is

reflected by their extensive structure similarities to 2pol@1 (Fig-

ure 3A). Beyond, we find a mixture of eukaryotic and archaeal

DNA clamps, suggesting that DNA clamps of eukaryotes and

archaea are more similar to each other than to bacterial DNA

clamps. The superposition of bacterial and eukaryotic (or

archaeal) DNA clamps immediately reveals that the entire ring

structures are equivalent (Sippl andWiederstein, 2012), although

bacterial DNA clamps are dimers, whereas eukaryotic and

archaeal DNA clamps are trimers (Figures 3B and 3C). Several

viral DNA clamps like the polymerase accessory protein of

bacteriophage T4 (rank 105; Figure 3D) are also trimers, and in

terms of their basic architecture, they seem to be more closely

related to the homotrimeric archaeal and eukaryotic DNA clamps

than to the homodimeric bacterial clamps.



Figure 1. AStructure Search on the Level ofMultiprotein ComplexesReveals Significant Structural Correlations that AreUndetectable on the

Level of Single Chains
(A and B) In order to identify similarities to other protein structures, a cytoplasmic protein of unknown function from S. typhimurium (PDB ID code: 2GJV; to be

published) is compared to all proteins in PDB. (A) Left: structure of homohexameric 2gjv@1, with chain A contoured. Middle: distribution of structure similarity

scores obtained from a search of 2gjv@1 against all known biological assemblies (138,294 items; November 7, 2013). Extensive structure similarity (S = 292.2, red

vertical line) is found between 2gjv@1 and homohexameric secretory protein Hcp3 from P. aeruginosa (3he1@1; Osipiuk et al., 2011). Note that a score of 292.2 is

far above the threshold of S+ = 100.0 (dashed line; Experimental Procedures) and close to the end of the distribution’s right tail; only 17 hits have a score S > 292.2.

Right: superposition of 2gjv@1 (blue) and 3he1@1 (green), with matching parts in orange (2gjv@1) and red (3he1@1). (B) Left: structure of chain A of 2gjv. Middle:

distribution of structure similarity scores obtained from a search of chain A of 2gjv against all known protein chains (242,925 items; November 7, 2013). As

indicated by the red vertical line, the structure similarity S = 56.7 to monomeric Hcp3 (chain A of 3he1) is hardly distinguishable from random matches and quite

below the threshold of S+ = 79.0 (dashed line). More than 25,000 other protein chains yield a score S > 56.7 when compared to chain A of 2gjv. Right: super-

position of chains A of 2gjv and 3he1, respectively. Colors as in (A).
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When going further down in the hit list, a sharp drop in similar-

ity is observed, demarcating the end of the ranks occupied by

full-ringmatches to the query. TheDNA clamps that followmatch

only part of the ring. Generally, this is due to one of the following

reasons: either the definition of the respective biological assem-

bly covers only part of the asymmetric unit, or experimental

structure determination was confined to subunits of the ring

(e.g., to one or two monomers). Moreover, DNA clamps that

are assembled from four subunits turn up in the hit list. For

example, at rank 112 we find a crenarchaeal sliding clamp form-

ing an elliptic heterotetrameric complex (Figure 3E). Because the

central channel of this complex is considerably larger than that of

the dimeric and trimeric clamps spotted so far, only two-thirds of

the query can be superimposed with the tetramer. A similar situ-

ation is encountered with (C-terminally truncated) early antigen

protein D from human herpesvirus 4, another DNA processivity

factor following shortly after in the hit list (Figure 3F). Although
this protein is reported to be dimeric in solution (Murayama

et al., 2009), tetrameric ring formation is observed in the asym-

metric unit, and the authors deposited both dimeric and tetra-

meric biological assemblies in PDB. Indeed, in a follow-up study,

the authors speculate that tetrameric ring formation might be

required for virus replication in vivo (Nakayama et al., 2010).

The two tetrameric complexes identified thus far differ signifi-

cantly in several aspects. First, the crenarchaeal structure is a

heterotetramer, whereas the viral structure is a homotetramer.

Second, the sequence identity between the archaeal monomers

and the viral monomer is below 10%, respectively, reflecting a

large evolutionary distance between the corresponding genes.

Third, although the monomers of the archaeal complex asso-

ciate in a ‘‘head-to-tail’’ manner, the monomers of the viral com-

plex associate in a ‘‘head-to-head’’ manner (Figure 4, bottom).

Given these differences it is quite astounding that the quaternary

structures of these two proteins are highly similar, as revealed by
Structure 22, 1063–1070, July 8, 2014 ª2014 The Authors 1065



Figure 2. A Search against a Representative

Subset of Structures Keeps the Main Infor-

mation Retrieved froman Exhaustive Search

The plot shows two distributions of structure

similarity scores S obtained from one-against-n

structure database searches. Searches were done

for a cytoplasmic protein of unknown function from

S. typhimurium (2gjv@1) against all known biolog-

ical assemblies (thin line, n = 138,294 items;

November 7, 2013) and against a representative

subset of them (bold line, n = 41,325 items, Sr =

90%; Experimental Procedures). The dashed ver-

tical lines mark the thresholds above which S is

considered to be significant at the 3s level

(Experimental Procedures). Note that these

thresholds are practically identical for both distri-

butions.
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pairwise structure comparison (Figure 4, top). The superposition

shows that large parts of the structures accurately match and

that the complexes share the size and shape of the central chan-

nel as well as the twist observed between the heterodimeric

planes of the archaeal structure. It has been hypothesized that

the central channel of the archaeal complex can accommodate

two stacked DNA duplexes and thus may clamp a Holliday junc-

tion (Kawai et al., 2011). To the viral processivity factor, a multi-

functional role in virus replication has been ascribed (Sugimoto

et al., 2011; Kawashima et al., 2013). The remarkable structural

correlation detected between the archaeal and the viral tetramer

suggests that the latter may also operate as a Holliday junction

clamp. Clearly, this structural correlationmotivates further inves-

tigation of the functional consequences implied by this type of

ring-like assembly.

We conclude the exploration of our example with a note on the

lower-ranking structurematches in the hit list. In the search strat-

egy presented, most of the pairwise structure comparisons that

would be covered by a truly exhaustive search are skipped, and

only an appropriate subset of them actually is processed (Exper-

imental Procedures). This does not imply, however, that the re-

sulting hit list is incomplete. In fact, we can give approximations

for all structure similarity scores that are not available from

directly calculated alignments. To investigate the loss of accu-

racy arising from this strategy, we compare the hit list of a truly

exhaustive search (i.e., a search where all pairwise alignments

are calculated) to the hit list obtained in part by approximation.

As shown in Figure 3, the error for approximated structure simi-

larity scores is negligible. In particular, the error is zero for all hits

expected to reveal significant matches, and only marginal for all

other targets (Figure 3, gray dots).

DISCUSSION

A frequent task in structural biology is the characterization of

newly determined protein structures in terms of structure similar-

ities to other proteins. The detection of common structural

features and correlations among proteins not only points to

important biological connections, but also allows for an

appropriate judgment of the novelty of newly determined struc-

tures. Finding such correlations, preferably in a comprehensive
1066 Structure 22, 1063–1070, July 8, 2014 ª2014 The Authors
manner, commonly turns out to be a demanding exercise,

because the information on structure similarities is to a large

part implicit, hidden, or inaccessible for biological research.

The structure search engine presented here provides a means

for the efficient and reliable detection of structure similarities

among biological assemblies of proteins, i.e., among those

structural units thought to represent the functional form of pro-

tein molecules.

As demonstrated by the examples discussed above, the

detection of structure similarities on the level of protein oligo-

mers is highly informative in that it can reveal correlations that

are concealed on the level of individual chains. Of particular in-

terest are situations where remarkably similar supramolecular

structures are assembled from distinct sets of structural building

blocks. In the case of the homohexameric assemblies compared

in Figure 1, the respective building blocks (chains) are not only

considerably different on the level of structure, but also they

have extremely low (�10%) pairwise sequence identity. Conse-

quently, the intra- and interchain interactions associated with the

respective assemblies arise from largely different groups of

amino acids, and it is an intriguing question as to which con-

straints result in the conservation (or, alternatively, convergent

evolution) of such structures of multisubunit complexes. We

emphasize that without proper structure-matching tools, struc-

tural correlations of this kind remain unrecognized, and we

encourage the interested reader to explore the examples dis-

cussed in the previous section as well as other structures of

choice using the accompanying web service TopSearch (see

Accessibility).

Although this work is focused on multiprotein complexes, the

methods developed here are seamlessly accessible for other

molecular objects like individual protein chains or asymmetric

units. Updates of the underlying structure databases are done

on a weekly basis so that TopSearch comprises all structures

available in PDB. Moreover, using the upload facility of

TopSearch, any set of protein structure coordinates in PDB

format can be used as a query for a search against the complete

structure repository. With this facility we particularly address the

X-ray and nuclear magnetic resonance (NMR) communities and

their need for instant and reliable characterization of the novelty

of experimentally determined structures before releasing them to



Figure 3. A Structure Search with a Dimeric Bacterial DNA Clamp against All Known Biological Assemblies Reveals Different Types of Ring-

like DNA Polymerase Subunits
The set of all biological assemblies (138,602 items; November 19, 2013) is searched for structures similar to a dimeric bacterial DNA clamp (2pol@; Kong et al.,

1992). Structure similarity scores S and ranks are plotted for the top 1,100 hits (black line). Structure similarities below the threshold of S+ = 75.1 (dashed vertical

line) are approximate (gray dots; Experimental Procedures). The dimeric bacterial clamp matches various ring-like assemblies, six of which are schematically

shown and linked to their respective positions in the hit list. (A) 2pol@1 (homodimer; Kong et al., 1992). (B) 1plr@1 (homotrimer; Krishna et al., 1994), a proliferating

cell nuclear antigen from Saccharomyces cerevisiae. (C) 3hi8@1 (homotrimer; Morgunova et al., 2009), a proliferating cell nuclear antigen from Haloferax volcanii.

(D) 1czd@1 (homotrimer; Moarefi et al., 2000), a DNApolymerase accessory protein from Enterobacteria phage T4. (E) 3aiz@1 (heterotetramer; Kawai et al., 2011),

a DNA polymerase sliding clamp from Sulfolobus tokodaii. (F) 2z0l@8 (homotetramer; Murayama et al., 2009), a DNA polymerase processivity factor from human

herpesvirus 4.

Structure

Structural Correlations among Protein Complexes
PDB. Beyond that, the presented tool opens a broad range of

possibilities for comparative studies of protein structures,

including the structure-based identification of all complexes

known to contain a particular protein chain, the investigation of

quaternary structure resemblances (Fenn et al., 2013; Kofler

et al., 2014), the exploration of fold space (Sippl, 2009), and

the evaluation of structures resulting from modeling efforts

(e.g., from protein-protein docking; Aloy et al., 2005). In the pro-

cess of digesting and organizing the vast amount of structures

provided by experimental and computational methods, we

expect a multitude of novel and unexpected structural correla-

tions yet to be discovered.

EXPERIMENTAL PROCEDURES

Database of Multiprotein Complexes

A comprehensive list of multiprotein complexes is obtained by extracting all

biological assemblies from all protein structures available from the Research

Collaboratory for Structural Bioinformatics (RCSB) PDB (Berman et al.,

2000). In PDB, a biological assembly (or ‘‘biological unit’’) is defined as a

specific macromolecular assembly that is known or believed to be one of

the functional forms of a molecule (Dutta et al., 2009; Dutta and Berman,

2005). A particular biological assembly may correspond to a single protein

chain, or it can be as large as a complete ribosome or virus capsid, containing

many individual protein chains. A PDB entry is usually accompanied by trans-

formation matrices (rotational and translational) that are used to generate the

full set of coordinates of a biological assembly.

Biological assemblies are generally derived from crystal structures. The

assignments are either supplied by the crystallographerswho solved the struc-

tures, or they are defined in an automated manner by specialized programs

(Henrick and Thornton, 1998; Krissinel and Henrick, 2007). There are many
cases where a single PDB entry contains two or more definitions of biological

assemblies so that the number of putative biological assemblies is consider-

ably larger than the number of solved structures. Currently, the PDB holds

approximately 95,000 protein structure files but more than 140,000 biological

assemblies.

In this work, a particular biological assembly is addressed by its four-letter

PDB code followed by the @ sign and the number of the assembly as defined

in REMARK 350 of the PDB file. For proteins with no biological assembly

defined (mostly NMR structures), we take all coordinates listed in the respec-

tive PDB file (the first model in case of NMR structures). These entries are iden-

tified by the PDB code followed by @0 (e.g., 1nmr@0).

Some technical limitations come from the PDB file format, which allows only

99,999 atoms and 62 unique chains. Examples are virus capsids such as that

of poliovirus (2plv) or simian virus 40 (1sva). For these files we include the

coordinates of the asymmetric unit and, again, add @0 to the PDB code to

identify them. Presently, limitations of such kind affect around 390 files. It is ex-

pected that these limitations will become obsolete with mmCIF format (West-

brook and Fitzgerald, 2003; Westbrook et al., 2005; Dutta and Berman, 2005).

Pairwise Structure Comparison

The pairwise alignment of multichain complexes presents several challenges

to structure comparison methods. One challenge is that macromolecular

assemblies are generally much larger than single-chain structures, implying

considerably increased computing time for finding optimal matches between

twomultichain complexes. Furthermore, in the simultaneous alignment of mul-

tiple chains, the relative order of chains is arbitrary, and in order not to miss a

solution, the algorithm has to be able to handle permutations in the construc-

tion of alignments (see, for example, Figure 4). Here, we use the structure

comparison tool TopMatch (Sippl and Wiederstein, 2012) to efficiently

compute accurate pairwise alignments between two proteins or protein com-

plexes, query (Q) and target (T).

TopMatch calculates several parameters that describe the structural rela-

tionship of Q and T. In particular, the length (L) of an alignment between Q
Structure 22, 1063–1070, July 8, 2014 ª2014 The Authors 1067



Figure 4. Pairwise Structure Comparison of Two Tetrameric DNA Processivity Factors Reveals High Similarity in Quaternary Structure

Despite Differences in the Constituent Subunits and Their Association

(Left) 3aiz@1 (Kawai et al., 2011), a heterotetrameric DNA polymerase sliding clamp from S. tokodaii.

(Right) 2z0l@8 (Murayama et al., 2009), a homotetrameric DNA polymerase processivity factor from human herpesvirus 4.

(Middle) Superposition of 3aiz@1 and 2z0l@8. Structurally equivalent parts are shown in orange and red.

(Bottom) Schematic views of the tetramers show the locations of N-terminal (H, ‘‘head’’) and C-terminal (T, ‘‘tail’’) domains. Due to different chain associations

(‘‘head-to-head’’ versus ‘‘head-to-tail’’ association), the full structural equivalence can only be seen if permutations are enabled in the structure comparison

procedure (Sippl and Wiederstein, 2012); without permutations only two of the four chains can be aligned, respectively (bottom middle).
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and T and the corresponding spatial deviation of Ca atoms after optimal super-

position are important to quantify the structure similarity of Q and T. Both

aspects are readily combined by

S=
XL

i

e�r2
i =s

2

;

where r2i = ðxi � yiÞ2 is calculated from the superimposed coordinates xi (Q)

and yi (T), and s is a scaling parameter that controls the weights of individual

distance errors (ri) (Sippl and Wiederstein, 2012). Accordingly, 0 % S % L,

where a perfect match of all structurally equivalent residue pairs yields

S = L, while S approaches 0 with increasing spatial deviation of Q and T.

Database Search

The most straightforward way to find proteins with high structure similarity to

a given query is a pairwise structure comparison for each entry of a

structure database and then to select those pairs that have high similarity

scores. However, this costs considerable computing time. For example,

such a search takes about 9 hr for a comparison of a hemoglobin tetramer

(�570 amino acid residues) to all �140, 000 biological assemblies currently

available in PDB, as carried out using TopMatch on a single present-day

desktop CPU.

In this proceduremuch time is wasted for the alignment of structures that are

highly dissimilar to the query. For essentially all query structures, it can be ex-

pected that matches on the level of tertiary and quaternary structure will only
1068 Structure 22, 1063–1070, July 8, 2014 ª2014 The Authors
be found to a small set of target structures in the database and that the bulk of

target structures show little or no structure similarity to the query anyway. For

instance, in the one-against-all search of hemoglobin sketched above, more

than 90% of all structures in the database match, if at all, only a tiny part

(<10%) of the query. In general, this means that most of the pairwise align-

ments done during an exhaustive structure search will be dismissed after

calculation, and only a small fraction of hits that show considerable structure

similarity to the query will be further analyzed.

In addition, redundancy of structures in the search database implies many

dispensable pairwise structure comparisons in an exhaustive search (Holm

et al., 2008). For instance, thousands of highly similar structures of globins

have been deposited to PDB, and in order to find out whether a query structure

matches a globin to a considerable degree, it is not necessary to compare the

query to each member of a structurally highly homogeneous group of globins

when a single comparison with a representative structure taken from this

group tells almost the same.

Thus, we use the following strategy in our structure search procedure. We

cluster the complete set of structures in the search database into groups of

structurally similar molecules (Sippl, 2009). From each group we select one

structure to represent all members of the group. The clustering procedure

ensures that for all members of a group the structure similarity to the represen-

tative reaches at least a certain threshold. We then align the query structure

to all representative structures only, thereby obtaining a nonredundant list

of pairwise structure similarities. The degree of redundancy removed (and

search time saved) in this way is controlled by the threshold used to build
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the clusters. Here, we express this threshold by the relative structure similarity

Sr = 2S/(QL + TL), where QL and TL are the numbers of residues in Q and T,

respectively (Sippl, 2008).

The similarities calculated between query and all representatives provide a

sample of the distribution of similarities in the complete search database.

Thus, they can be used to identify and sort out all structures that are expected

to have only marginal similarity to the query. More specifically, let 4(S) be the

distribution of structure similarity scores, S, over the complete set of structures

in the search database. We approximate 4(S) by the distribution 40ðSÞ of

scores obtained from the sample of representative structures. Both 4 and 40

will, in general, be dominated by rather low similarity scores, arising from the

bulk of structures that onlymatch small parts of the query (e.g., a pair of helices

or less). Significant matches on the level of tertiary or quaternary structure will

be comparably rare and clearly separated from the bulk, typically by several

standard deviations (s) above the average score, S. Here, we use a score

S+ =S+ 3s as threshold to distinguish representatives with high similarity to

the query from insignificant similarities. We select all clusters whose represen-

tatives have a similarity score to the query greater than S+. We then calculate

pairwise structure alignments between the query and all members of these

clusters.

The procedure just described guarantees exact similarity scores to all struc-

tures in the database that are (1) representatives with a score above S+, or (2) in

the same cluster as such a representative. These structures cover the inter-

esting part of the hit list, in the sense that their similarities to the query are

significantly above the marginal matches of the bulk. All other structures are

skipped from direct pairwise alignment because extensive similarity is not ex-

pected. Nevertheless, we can efficiently approximate their similarities to the

query using metric properties of the TopMatch scores: because we know

the exact similarities to all representatives, we can determine a minimal struc-

ture similarity to the query for all members of the respective clusters (Sippl,

2008). In this way, no entry of the search database can get lost, the resulting

hit list is complete and can finally be ordered by decreasing S to identify the

best matching targets.

Accessibility

The structure search tool presented here is implemented as web service

called TopSearch and can be accessed at https://topsearch.services.

came.sbg.ac.at. Search results are provided as a web page that lists all

target structures by decreasing structural similarity to the query structure.

Queries are specified by PDB code or by upload of coordinate files in

PDB format. The structure similarities found can be analyzed in detail by

clicking on the respective entry in the hit list. This triggers a pairwise struc-

ture comparison of query and target with TopMatch (Sippl and Wiederstein,

2012), including a 3D visualization of the superimposed structures with

Jmol (Hanson, 2010). Each target is annotated with various attributes that

help to interpret the results, such as source organism, ligands, release

date, and resolution. In addition, a condensed view of the target list can

be selected that displays groups of structurally similar targets, thereby

removing redundant entries from the target list and focusing on the structural

diversity of the hits.

The repository of structures accessible in TopSearch is updated regularly

with the weekly releases of the RCSB PDB. Every structure newly released

by the PDB enters the structure search pipeline presented above and is pro-

cessed and integrated into TopSearch within days after release. As a result,

if the TopSearch query is specified by PDB code, access to the structural re-

lations between query and all other structures in PDB is instantaneous. If the

query is specified by upload of a coordinate file, the hit list is usually available

within several hours.

The figures shown in this paper are prepared with the UCSF Chimera pack-

age (Pettersen et al., 2004) and PyMOL (Schrödinger).
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