Abstract

The topic of this thesis is the study of Cauchy-Dirichlet problems of certain nonlinear evolutionary partial differential equations. In their most inclusive form, they can be written as

$$\partial_t \mathbf{\Phi}(u) - \operatorname{div} \mathbf{A}(x, t, u, Du) + \mathbf{B}(x, u) = \operatorname{div} \mathbf{F}$$
 in Ω_T ,
 $u = u_0$ on $\partial_{\text{par}} \Omega_T$.

The equations are considered on a space-time cylinder $\Omega_T := \Omega \times (0, T)$, where Ω is an open, bounded set in \mathbb{R}^n and T > 0 is a positive time. The Cauchy-Dirichlet problem consists of demanding that solutions take prescribed boundary values u_0 on the parabolic boundary $\partial_{\text{par}}\Omega_T$, which is composed of the lateral boundary $\partial\Omega \times (0,T)$ as well as the initial boundary $\Omega \times \{0\}$. Inspected subjects are continuity, higher integrability and stability properties.

Publication I deals with the equation given by $\Phi(u) = u$, $\mathbf{A}(x, t, u, Du) = D_{\xi}f(Du)$, $\mathbf{B}(x, u) = D_{u}g(x, u)$, $\mathbf{F}(x, t) = 0$ and a time-independent boundary datum u_0 . We prove a Haar-Rado type theorem, where we conclude that a continuity condition can be transferred from the boundary datum u_0 to a variational solution. Additionally, we apply this result to obtain spatial Lipschitz continuity under the assumption that u_0 fulfils the bounded slope condition.

In Publication II, we inspect the system related to the porous medium equation given by $\Phi(u) = u$, $\mathbf{B} = 0$, $\mathbf{F} = 0$ and the vector field \mathbf{A} depending on Du^m instead of Du. We show that weak solutions are stable under perturbations of the parameter m. More precisely, a sequence of weak solutions with parameter m_i will converge to a weak solution with parameter m whenever $m_i \longrightarrow m$ as $i \longrightarrow \infty$. Notably, no higher integrability result is needed to obtain this property.

Publication III focuses on weak solutions of the doubly nonlinear problem where $\Phi(u) = |u|^{p-2}u$, $\mathbf{B} = 0$ and u_0 vanishes when approaching the lateral boundary. Considering the case $p \leq 2$, we show that the weak gradient admits a self-improving property in the sense that it belongs to a better Lebesgue space than what is naturally required. To obtain this higher integrability result, we make use of intrinsically scaled cylinders.