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Plurality Consensus

▶ We consider plurality consensus in a distributed system of n agents.
▶ Initially each agent has one of k possible opinions.
▶ Agents interact in pairs and update their opinions based on other opinions they observe.
▶ The goal is that eventually all agents agree on the same opinion.
▶ If there is a sufficiently large bias the initially largest opinion should prevail.

▶ Consensus is a fundamental problem in distributed computing and beyond:
▶ fault tolerant sensor arrays
▶ majority-based conflict resolution
▶ models for dynamic particle systems and biological processes
▶ opinion spreading processes in social networks
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Undecided State Dynamics

Basic variant: [Angluin et al., Distributed Computing 2008]
▶ Agents interact in pairs chosen uniformly at random.
▶ Any agent that encounters another agent with a different opinion becomes undecided.
▶ Undecided agents adopt the first opinion they observe.
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Undecided State Dynamics

Basic variant: [Angluin et al., Distributed Computing 2008]
▶ Agents interact in pairs chosen uniformly at random.
▶ Any agent that encounters another agent with a different opinion becomes undecided.
▶ Undecided agents adopt the first opinion they observe.

Related work:
▶ Angluin et al. show that consensus is reached w.h.p. in O(n log n) interactions for k = 2 opinions.
▶ Becchetti et al. [SODA’15] analyzes the case k = O((n/ log n)1/3) opinions.
▶ Condon et al. [Nat. Comput. 2020] reduce the required bias to Ω(

√
n log n).

▶ Clementi et al. [MFCS’18] study the undecided state dynamics in the gossip model.
▶ They show convergence in O(log n) rounds for k = 2 opinions, w.h.p.
▶ Berenbrink et al. [ICALP’16] and Ghaffari and Parter [PODC’16] consider a synchronized variant.
▶ They achieve consensus in O(log k log n) rounds but require a bias in their analysis.

3b



Undecided State Dynamics

Basic variant: [Angluin et al., Distributed Computing 2008]
▶ Agents interact in pairs chosen uniformly at random.
▶ Any agent that encounters another agent with a different opinion becomes undecided.
▶ Undecided agents adopt the first opinion they observe.

We consider two models:

Population Model
▶ discrete time steps
▶ one random pair of agents interacts

▶ number of interactions
▶ number of states

Gossip Model
▶ synchronous rounds
▶ every agent interacts simultaneously

▶ number of rounds
▶ memory in bits
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Population Model [Angluin et al., Distributed Computing 2006]

▶ resource-limited mobile agents (finite-state machines)
▶ computation is a sequence of pairwise interactions
▶ interacting agents apply a common transition function δ
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Our Contribution

▶ We consider a synchronized variant of
the undecided state dynamics.

▶ A phase clock divides time into phases.
▶ Each phase consists of two parts.

Actions performed when agents (u, v) interact:

if u is in the decision part:
if opinion[u] ̸= opinion[v] then do once

opinion[u]← undecided

if u is in the boosting part:
if opinion[u] = undecided then

opinion[u]← opinion[v]

synchronize phase clocks

▶ Our protocol reaches consensus in O(n log2 n) interactions.
▶ If there is a plurality opinion, the agents agree on that opinion.
▶ Otherwise, they agree on a significant opinion.

▶ Our results hold for up to n opinions and independently of a bias.
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Analysis

▶ assume that the phase clocks strictly separate the phases for all agents
▶ define two series of random vectors X = (X(t))t∈N and Y = (Y (t))t∈N

▶ Xi(t): number of agents with opinion i at the beginning of the decision part of phase t.
▶ Yi(t): number of agents with opinion i at the beginning of the boosting part of phase t.

Observation (Decision Part)
Fix X(t) = x. Then

Yi(t) ∼ Bin(xi,xi/n).

Observation (Boosting Part)
Fix Y (t) = y and d = ∥y∥1. Then

Xi(t + 1) ∼ PE(

yi, d− yi, n− d

).

We consider three cases, depending on the number of opinions k.
▶ Case 1: k ≤

√
n/ log n

▶ Case 2:
√

n/ log n < k ≤
√

n

▶ Case 3:
√

n < k
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Pólya-Eggenberger Distribution

▶ The Pólya-Eggenberger process is a simple urn process that runs in discrete steps.
▶ Initially the urn contains a red balls and b blue balls (a, b ∈ N0).

▶ In each step:
▶ draw one ball uniformly at random,
▶ observe its color,
▶ return the ball, and
▶ add one additional ball of the same color.

▶ The Pólya-Eggenberger distribution is denoted PE(a, b, m).
▶ It describes the total number of red balls after m steps.
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Case 1: k ≤
√

n/ log n

▶ The proof follows along the lines of known results. [Ghaffari and Parter, PODC’16]
[Berenbrink et al., ICALP’16]

▶ Opinions are classified as strong, weak, or super-weak. [Ghaffari and Lengler, PODC’18]

▶ We consider all pairs of opinions and O(log n) phases:
▶ at least one opinion in each pair becomes weak, then super-weak, and then extinct.

▶ For pairs of strong opinions of similar initial size we apply a drift result.
[Doerr et al., SPAA’11]
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Case 2:
√

n/ log n < k ≤
√

n

▶ This case is the main novelty of our analysis.
▶ It contains many hard configurations:

▶ Opinions can be strong and super-weak at the same time.
▶ Opinions cannot be tracked via concentration inequalities.
▶ Opinions do not vanish immediately.
▶ The opinion which provides the maximum support changes over time.

▶ We consider O(log n) phases and exploit the variance of the process.
▶ There is (at least) one opinion which gains a support of Ω(n · log3/2 n).
▶ This follows from the drift result applied to the support of the largest opinion.

▶ A case distinction and counting arguments yield the following:
▶ many opinions become small (and eventually die out) in subsequent phases.

▶ After at most O(log n) phases we are back in Case 1.
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Case 3:
√

n < k

▶ It might happen that all agents become undecided.
▶ In this case, we restore the opinion distribution from the beginning of the phase.
▶ The probability can be bounded by (1− 1/n)n < 1/e.
▶ In all other phases, a constant fraction of the opinions dies out.

▶ After at most O(log n) phases we are back in Case 2.
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Our Result

Theorem (simplified)
Our protocol uses k ·Θ(log log n) states per agent.
All agents agree on a significant opinion in O(n log2 n) interactions w.h.p.
If there is an additive bias of order ω(

√
n log n), the initial plurality opinion wins w.h.p.
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Conclusions and Open Problems

▶ Our work’s main novelty is the unconditional analysis for any number of opinions and bias.

▶ One natural open question is whether our results are tight.
▶ Our algorithm needs O(log n) phases for breaking ties.
▶ It might be possible to work with shorter phase lengths or interleaved consecutive phases.

▶ For the gossip model it is known that the unsynchronized undecided state dynamics is
much slower than the synchronized version.

▶ It would be interesting to show a similar result for the population model.

▶ Finally, another open question is to bound the expected running time of the USD.
▶ Can we design a stable protocol that always converges to one opinion with probability 1?
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Thank You — Questions welcome!
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