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Plurality Consensus

>
>
>
>
>

>

We consider plurality consensus in a distributed system of n agents.

Initially each agent has one of k possible opinions.

Agents interact in pairs and update their opinions based on other opinions they observe.

The goal is that eventually all agents agree on the same opinion.

If there is a sufficiently large bias the initially largest opinion should prevail.

Consensus is a fundamental problem in distributed computing and beyond:

>
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fault tolerant sensor arrays

majority-based conflict resolution

models for dynamic particle systems and biological processes
opinion spreading processes in social networks



Undecided State Dynamics

Basic variant: [Angluin et al., Distributed Computing 2008]
» Agents interact in pairs chosen uniformly at random.
> Any agent that encounters another agent with a different opinion becomes undecided.
» Undecided agents adopt the first opinion they observe.
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Angluin et al. show that consensus is reached w.h.p. in O(nlogn) interactions for k = 2 opinions.
Becchetti et al. [SODA'15] analyzes the case k = O((n/logn)*/?) opinions.

Condon et al. [Nat. Comput. 2020] reduce the required bias to Q(y/nlogn).

Clementi et al. [MFCS'18] study the undecided state dynamics in the gossip model.

They show convergence in O(logn) rounds for k = 2 opinions, w.h.p.

Berenbrink et al. [[CALP'16] and Ghaffari and Parter [PODC'16] consider a synchronized variant.

They achieve consensus in O(log klogn) rounds but require a bias in their analysis.
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Population Model [Angluin et al., Distributed Computing 2006]

> resource-limited mobile agents (finite-state machines)
» computation is a sequence of pairwise interactions

» interacting agents apply a common transition function ¢
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Our Contribution

» We consider a synchronized variant of
the undecided state dynamics.

» A phase clock divides time into phases.

» Each phase consists of two parts.

Actions performed when agents (u, v) interact:

if u is in the decision part:
if opinion[u] # opinion[v] then do once
opinion[u] < undecided

if w is in the boosting part:
if opinion[u] = undecided then
opinion[u] < opinion[v]

synchronize phase clocks
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We consider a synchronized variant of
the undecided state dynamics.

A phase clock divides time into phases.

Each phase consists of two parts.

Actions performed when agents (u, v) interact:

if u is in the decision part:
if opinion[u] # opinion[v] then do once
opinion[u] < undecided

if w is in the boosting part:
if opinion[u] = undecided then
opinion[u] < opinion[v]

synchronize phase clocks

Our protocol reaches consensus in O(nlog? n) interactions.

If there is a plurality opinion, the agents agree on that opinion.

Otherwise, they agree on a significant opinion.

Our results hold for up to n opinions and independently of a bias.



Analysis

» assume that the phase clocks strictly separate the phases for all agents
> define two series of random vectors X = (X (t))teny and YV = (Y (¢))ten

> X;(t): number of agents with opinion 4 at the beginning of the decision part of phase t.
» Y;(t): number of agents with opinion i at the beginning of the boosting part of phase t.

Observation (Decision Part) Observation (Boosting Part)
Fix X (t) = x. Then FixY(t) =y and d = |ly|l1. Then

Y. (t) ~ Bin(x;, x;/n). X, (t+1) ~PE( ).



Polya-Eggenberger Distribution

v

The Pdlya-Eggenberger process is a simple urn process that runs in discrete steps.

v

Initially the urn contains a red balls and b blue balls (a,b € Ng).

» In each step:
» draw one ball uniformly at random,
observe its color,
return the ball, and
add one additional ball of the same color.

vvyy
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The Pélya-Eggenberger distribution is denoted PE(a, b, m).
> It describes the total number of red balls after m steps.
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Analysis

» assume that the phase clocks strictly separate the phases for all agents
> define two series of random vectors X = (X (t))ieny and Y = (Y (¢))ien

> X;(t): number of agents with opinion 4 at the beginning of the decision part of phase t.
» Y;(t): number of agents with opinion i at the beginning of the boosting part of phase t.

Observation (Decision Part) Observation (Boosting Part)
Fix X (t) = x. Then FixY(t) =y and d = |ly|l1. Then
Y. (t) ~ Bin(x;, x;/n). X, (t+1) ~PE(y;,d — y;,n — d).

We consider three cases, depending on the number of opinions k.
> Case 1: k< y/n/logn
» Case 2: y/n/logn <k </n
> Case 3: Vn <k
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Case 1: k < /n/logn

> The proof follows along the lines of known results. [Ghaffari and Parter, PODC'16]
[Berenbrink et al., ICALP'16]

> Opinions are classified as strong, weak, or super-weak. [Ghaffari and Lengler, PODC'18]

» We consider all pairs of opinions and O(logn) phases:
> at least one opinion in each pair becomes weak, then super-weak, and then extinct.

» For pairs of strong opinions of similar initial size we apply a drift result.
[Doerr et al., SPAA'11]



Case 2: \/n/logn < k < ./n

» This case is the main novelty of our analysis.
» |t contains many hard configurations:
» Opinions can be strong and super-weak at the same time.
» Opinions cannot be tracked via concentration inequalities.
» Opinions do not vanish immediately.
» The opinion which provides the maximum support changes over time.
» We consider O(logn) phases and exploit the variance of the process.
» There is (at least) one opinion which gains a support of Q(n - log®/? n).
» This follows from the drift result applied to the support of the largest opinion.

> A case distinction and counting arguments yield the following:

> many opinions become small (and eventually die out) in subsequent phases.

> After at most O(logn) phases we are back in Case 1.
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Case 3: /n <k
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It might happen that all agents become undecided.
In this case, we restore the opinion distribution from the beginning of the phase.
The probability can be bounded by (1 —1/n)" < 1/e.

In all other phases, a constant fraction of the opinions dies out.

After at most O(logn) phases we are back in Case 2.



Our Result

Theorem (simplified)

Our protocol uses k - ©(loglogn) states per agent.
All agents agree on a significant opinion in O(nlog2 n) interactions w.h.p.
If there is an additive bias of order w(y/nlogn), the initial plurality opinion wins w.h.p.



Conclusions and Open Problems

» Our work's main novelty is the unconditional analysis for any number of opinions and bias.

» One natural open question is whether our results are tight.
» Our algorithm needs O(logn) phases for breaking ties.

» It might be possible to work with shorter phase lengths or interleaved consecutive phases.

» For the gossip model it is known that the unsynchronized undecided state dynamics is
much slower than the synchronized version.

» It would be interesting to show a similar result for the population model.

» Finally, another open question is to bound the expected running time of the USD.
» Can we design a stable protocol that always converges to one opinion with probability 17
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