

Modeling and Simulation (M&S) in Embedded Software Development

Stefan Resmerita et al.

Embedded Systems

IEEE Spectrum

Embedded Software

- Runs on execution platforms with limited computing resources
 - memory and clock speed
- Subject to real-time requirements
 - periodic execution, worst-case reaction time, end-to-end latency
- Legacy software: Hand-coded, performance-oriented design
- Modern software: Code-generated, model-based design

Embedded Software Industry (auto)

- Functions developed by different teams/companies and delivered as binaries + documentation
- Put together into one system (ECU) by the ECU supplier
- Properties are difficult to verify
- Changes are difficult to manage
- Validation is done mainly by simulation

Validation

- Functional properties
 - Individual software component (unit testing)
 - Ensemble (integration) of software components
 - Deployment
- Non-Functional properties
 - Time
 - Energy consumption
 - Implementation costs

Validation

- Functional properties
 - Individual software component (unit testing)
 - Ensemble (integration) of software components
 - Deployment
- Non-Functional properties
 - Time
 - Energy consumption
 - Implementation costs
- Instrumental in industrial adoption of research results!

A M&S Success Story

Logical Execution Time: from concept to practice to production (2001-2021)

The Logical Execution Time (LET)

The Logical Execution Time (LET)

- Programming model (Giotto, 2001)
 - Separation of concerns: timing from functionality from platform

LET Adoption in Industry?

Benefits

- Determinism
- Robustness
- Portability
- Correct-by-construction design

Costs

- CPU usage
- Memory
- Increased end-to-end latency

A History of Execution Time

• 2001: Giotto (Henzinger, Horrowitz, Kirsch)

A History of Execution Time

- 2001: Giotto (Henzinger, Horrowitz, Kirsch)
- 2004: TDL (Pree, Templ)

A History of Execution Time

- 2001: Giotto (Henzinger, Horrowitz, Kirsch)
- 2004: TDL (Pree, Templ)
- 2008: Simulation of LET Models in Simulink and Ptolemy (Derler, Naderlinger, Pree, Resmerita, Templ)
- 2012: The Validator Tool Suite (Resmerita, Pree)

A History of Execution Time (contd.)

- 2001: Giotto (Henzinger, Horrowitz, Kirsch)
- 2004: TDL (Pree, Templ)
- 2008: Simulation of LET Models in Simulink and Ptolemy (Derler, Naderlinger, Pree, Resmerita, Templ)
- 2012: The Validator Tool Suite (Resmerita, Pree)
 - 2012: Coordinating AUTOSAR runnable entities using Giotto first concepts (Belau, von Hasseln, Simons)

A History of Execution Time (contd.)

- 2001: Giotto (Henzinger, Horrowitz, Kirsch)
- 2004: TDL (Pree, Templ)
- 2008: Simulation of LET Models in Simulink and Ptolemy (Derler, Naderlinger, Pree, Resmerita, Templ)
- 2012: The Validator Tool Suite (Resmerita, Pree)
 - 2012: Coordinating AUTOSAR runnable entities using Giotto first concepts (Belau, von Hasseln, Simons)
- 2015: Applying Real-time Programming to Legacy Embedded Control Software (Resmerita, Naderlinger, Huber, Butts, Pree)

2015: LET for Toyota's Engine Control Software

- Million+ lines of code
- Event-triggered tasks
- 8 LET tasks
- 2000+ task ports
- 450 additional buffers
- RAM increase: 0.37%
- ROM increase: 1.3%
- CPU utilization: up 3.4%
- Same I/O behavior
- Increased robustness

A History of Execution Time (contd.)

- 2001: Giotto (Henzinger, Horrowitz, Kirsch)
- 2004: TDL (Pree, Templ)
- 2008: Simulation of LET Models in Simulink and Ptolemy (Derler, Naderlinger, Pree, Resmerita, Templ)
- 2012: The Validator Tool Suite (Resmerita, Pree)
 - 2012: Coordinating AUTOSAR runnable entities using Giotto first concepts (Belau, von Hasseln, Simons)
- 2015: Applying Real-time Programming to Legacy Embedded Control Software (Resmerita, Naderlinger, Huber, Butts, Pree)
- 2016: Towards Parallelizing Legacy Embedded Control Software Using the LET Programming Paradigm (Hennig, ..., Resmerita, Lukesch, Naderlinger)

2016: LET for Daimler's Central Powertrain Control Software (CPC)

- Migration of CPC-SW from single-core to multi-core with minimal changes in the application
- CPC: One 10ms task, hundreds of top-level functions

2016: LET for Daimler's Central Powertrain Control Software (CPC)

- Migration of CPC-SW from single-core to multi-core with minimal changes in the application
- CPC: One 10ms task, hundreds of top-level functions
- Clear, intuitive, standard-supported specification of parallel behavior
- Built-in robustness

2016: LET for Daimler's CPC

2016: LET @Continental

	0 t(μs)																				
Core	Mode	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000
AO	1ms	01				01				01				01				01			
AO	5ms		01				02				03										
AO	Transition																				
A1	5ms		01				02				03										
A1	10ms			0	1			0	2			0	3								
A1	20ms														01						
A1	Transition																				
A2	5ms		01				02				03										
A2	10ms			0	1			0	2			0	3								
A2	20ms														01						
A2	Transition																				

2016: LET at Continental

	0	t(µs)																			
Core	Mode	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000
AO	1ms	01				01				01				01				01			
AO	5ms		01				02				03										
AO	Transition																				
A1	5ms		01				02				03										
A1	10ms																				
A1	20ms													7	01						
A1	Transition																				
A2	5ms		01				02				03										
A2	10ms																				
A2	20ms										_				01						
A2	Transition				Sa	me	: Va	alic	lati	on	ste	eps	5:								

- SIL with the **Validator** approach
- HIL at Continental

LET Inside!

• 2018: LET in industry standard AUTOSAR 4.4

• 2021: LET-based Central Powertrain Software in

Mercedes EQA

LET Inside!

- 2018: LET in industry standard AUTOSAR 4.4
- 2021: LET-based Central Powertrain Software in Mercedes EQA
- 2022: Mercedes-Benz: In the Entry Luxury segment, the EQA is the topselling all-electric model with 33,100 units"

"Alle künftigen zentralen Antriebssteuergeräte werden den LET-Ansatz umsetzen" werden simons, Mercedes-Benz AG Dr. Martin Simons, Mercedes-Benz AG

Our Experience

- Deal with the hard truth
 - No "moving the goal posts"
 - No "example engineering"
 - Not just "proof of concept" (aka quick-hack) implementation

Our Experience

- Deal with the hard truth
 - No "moving the goal posts"
 - No "example engineering"
 - Not just "proof of concept" (aka quick-hack) implementation
- Deal with IP concerns
 - Work on-site
 - Generalize (structure, architecture)
 - Reproduce off-site

Modeling

Our Experience

- Deal with the hard truth
 - No "moving the goal posts"
 - No "example engineering"
 - Not just "proof of concept" (aka quick-hack) implementation
- Deal with IP concerns
 - Work on-site
 - Generalize (structure, architecture)
 - Reproduce off-site
- Convince people
 - Validation (Pictures)
 - Evaluation (Numbers)

Thank you!