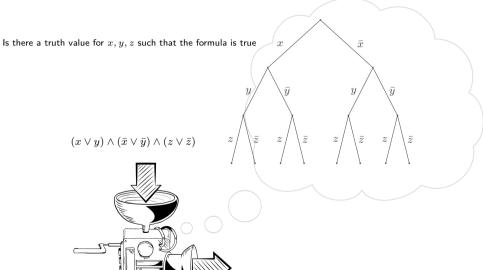
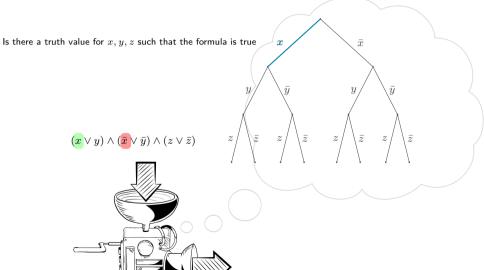
NEVER TRUST YOUR SOLVER: CERTIFICATION FOR SAT AND QBF

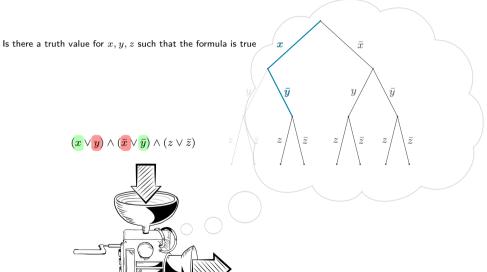
Martina Seidl

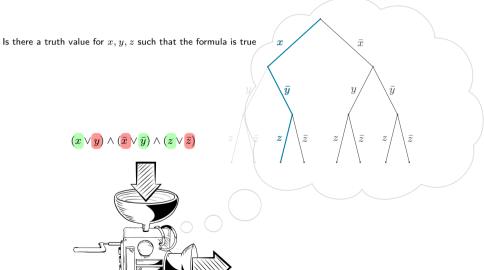
Is there a truth value for x,y,z such that the formula is true

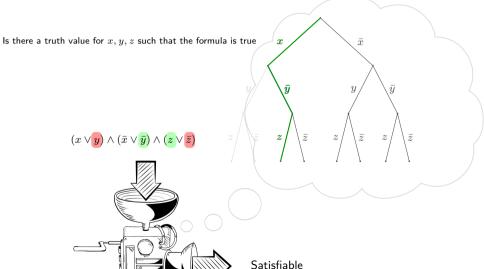
$$(x \lor y) \land (\bar{x} \lor \bar{y}) \land (z \lor \bar{z})$$





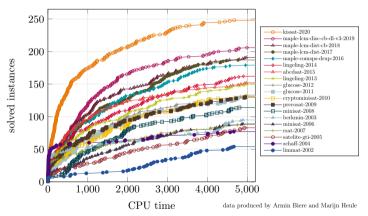






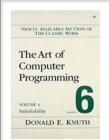
Evolution of SAT Solver

SAT Competition Winners on the SC2020 Benchmark Suite



"SAT is a key technology of the 21st century."

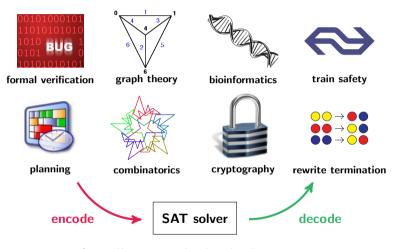
-Edmund Clarke Handbook of Satisfiability



"The SAT problem is evidently a 'killer app,' because it is key to the solution of so many other problems."

-Donald Knuth The Art of Computer Programming, vol. 4 on SAT

Practical Applications of SAT



 $from \ http://www.cs.utexas.edu/users/marijn/talks/Ptn-Linz.pdf$

Propositional Logic

Elements of a formula:

- literal: variable or negated variable
- **clause**: disjunction of literals
- formula in CNF (conjunctive normal form): conjunction of clauses

Example

$$(\neg u \lor z) \land (y \lor u \lor \neg z) \land (x \lor \neg u \lor \neg z)$$

Propositional Logic

Elements of a formula:

- literal: variable or negated variable
- **clause**: disjunction of literals
- formula in CNF (conjunctive normal form): conjunction of clauses

Example

$$(\neg u \lor z) \land (y \lor u \lor \neg z) \land (x \lor \neg u \lor \neg z)$$

Semantics: A CNF formula is true under an assignment σ of the Boolean variables iff each clause contains at least one literal that is true under σ .

How to Ensure Correctness of SAT Solvers?

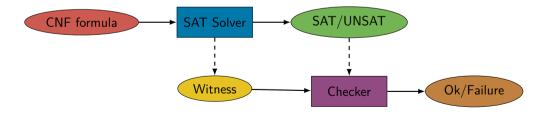
1. Carefull testing: incomplete

How to Ensure Correctness of SAT Solvers?

- 1. Carefull testing: incomplete
- 2. Verification of SAT Solver: not feasible in general

How to Ensure Correctness of SAT Solvers?

- 1. Carefull testing: incomplete
- 2. Verification of SAT Solver: not feasible in general
- 3. Check result by independent checker



Witnesses

■ True formula: easy

Check if the assignment returned by SAT solver is a satisfying assignment.

Witnesses

True formula: easy Check if the assignment returned by SAT solver is a satisfying assignment.

- False formula: ??
 - □ unsatisfiability proof
 - □ ideally, checking is polynomial in the proof size

CERTIFICATION FOR SAT

Proof system with two rules:

Clause Axiom

 \overline{C} (cl-init)

Proof system with two rules:

Clause Axiom

$$\overline{\mathsf{C}}$$
 (cl-init)

Resolution Rule

$$\frac{C_1 \vee p \qquad C_2 \vee \bar{p}}{C_1 \vee C_2} \tag{res}$$

Proof system with two rules:

Clause Axiom

$$\overline{\mathsf{C}}$$
 (cl-init)

Resolution Rule

$$\frac{C_1 \vee p \qquad C_2 \vee \bar{p}}{C_1 \vee C_2} \tag{res}$$

■ in other words:

$$(\neg p
ightarrow C_1)$$
 AND $(p
ightarrow C_2)$ DERIVE $C_1 \lor C_2$

Proof system with two rules:

Clause Axiom

$$\overline{\mathsf{C}}$$
 (cl-init)

Resolution Rule

$$\frac{C_1 \vee p \qquad C_2 \vee \bar{p}}{C_1 \vee C_2} \tag{res}$$

■ in other words:

$$(\neg p \to C_1) \text{ AND } (p \to C_2) \text{ DERIVE } C_1 \lor C_2$$

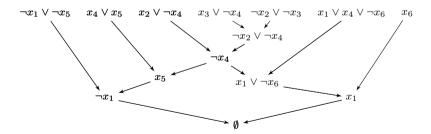
resolution is sound and complete

Resolution Example

We prove unsatisfiability of

$$\{(\neg x_1 \lor \neg x_5), (x_4 \lor x_5), (x_2 \lor \neg x_4), (x_3 \lor \neg x_4), (\neg x_2 \lor \neg x_3), (x_1 \lor x_4 \lor \neg x_6), (x_6)\}$$

as follows:



More Background: Boolean Constraint Propagation (BCP)

Let ϕ be a formula in CNF containing a unit clause C, i.e., ϕ has a clause C=(l) which consists only of literal l. Then $BCP(\phi,l)$ is obtained from ϕ by

- \blacksquare removing all clauses with l
- lacktriangleright removing all occurrences of $ar{l}$

- BCP can trigger other applications of BCP
- if BCP results in empty clause, then formula is unsatisfiable
- if BCP produces the empty CNF, then formula satisfiable

$$\phi = \{ (\neg a \lor b \lor \neg c), (a \lor b), (\neg a \lor \neg b), (a) \}$$

$$\phi = \{ (\neg a \lor b \lor \neg c), (a \lor b), (\neg a \lor \neg b), (a) \}$$

1.
$$\phi' = BCP(\phi, a) = \{(b \lor \neg c), (\neg b)\}\$$

$$\phi = \{ (\neg a \lor b \lor \neg c), (a \lor b), (\neg a \lor \neg b), (a) \}$$

1.
$$\phi' = BCP(\phi, a) = \{(b \lor \neg c), (\neg b)\}\$$

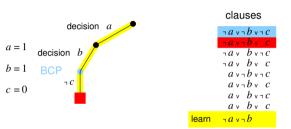
2.
$$\phi'' = BCP(\phi', \neg b) = \{(\neg c)\}\$$

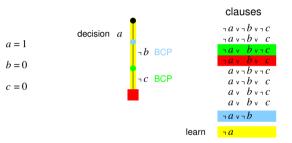
$$\phi = \{ (\neg a \lor b \lor \neg c), (a \lor b), (\neg a \lor \neg b), (a) \}$$

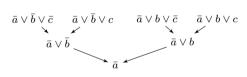
1.
$$\phi' = BCP(\phi, a) = \{(b \lor \neg c), (\neg b)\}\$$

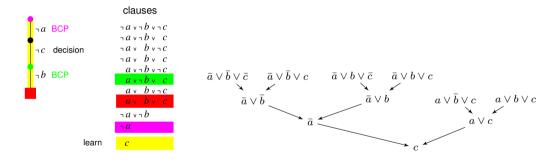
2.
$$\phi'' = BCP(\phi', \neg b) = \{(\neg c)\}\$$

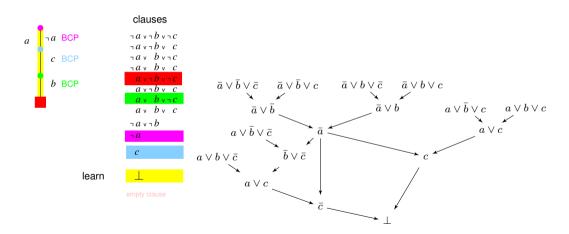
3.
$$\phi'' = BCP(\phi', c) = \{\} = \top$$











Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $\mathsf{BCP}(\phi \wedge \bar{C}) = \bot$.

Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $\mathsf{BCP}(\phi \wedge \bar{C}) = \bot$.

The RUP proof system allows the addition of RUP clauses.

Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $\mathsf{BCP}(\phi \wedge \bar{C}) = \bot$.

The RUP proof system allows the addition of RUP clauses.

Example

input	learned
$\bar{a}\vee\bar{b}\vee c$	$ar{a} ee ar{b}$
$\bar{a}\vee\bar{b}\vee\bar{c}$	$ar{a}$
$a\vee \bar{b}\vee c$	c
$a\vee \bar{b}\vee \bar{c}$	\perp
$\bar{a} \vee b \vee c$	
$\bar{a}\vee b\vee\bar{c}$	
$a \vee b \vee c$	
$a \lor b \lor \bar{c}$	

Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $BCP(\phi \wedge \bar{C}) = \bot$.

The RUP proof system allows the addition of RUP clauses.

Example

input	learned	
$\bar{a}\vee\bar{b}\vee c$	$ar{a} ee ar{b}$	
$\bar{a} \vee \bar{b} \vee \bar{c}$	\bar{a}	7.77
$a \vee \bar{b} \vee c$	c	■ BCP $(\phi \land a \land b) = \bot$
$a \vee \bar{b} \vee \bar{c}$	\perp	
$\bar{a} \vee b \vee c$		
$\bar{a}\vee b\vee\bar{c}$		
$a \vee b \vee c$		
$a \lor b \lor \bar{c}$		

Certification By Reverse Unit Propagation (RUP)

Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $BCP(\phi \wedge \bar{C}) = \bot$.

The RUP proof system allows the addition of RUP clauses.

Example

input	learned	
$\bar{a}\vee\bar{b}\vee c$	$ar{a} ee ar{b}$	
$\bar{a}\vee\bar{b}\vee\bar{c}$	$ar{a}$	DCD (// 1)
$a \lor \bar{b} \lor c$	c	■ BCP $(\phi \land a \land b) = \bot$
$a \vee \bar{b} \vee \bar{c}$	\perp	■ BCP $(\phi \wedge (\bar{a} \vee \bar{b}) \wedge a) = \bot$
$\bar{a} \vee b \vee c$		
$\bar{a}\vee b\vee\bar{c}$		
$a \vee b \vee c$		
$a \vee b \vee \bar{c}$		

Certification By Reverse Unit Propagation (RUP)

Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $BCP(\phi \wedge \bar{C}) = \bot$.

The RUP proof system allows the addition of RUP clauses.

Example

input	learned	
$\bar{a}\vee\bar{b}\vee c$	$ar{a} ee ar{b}$	
$\bar{a} \vee \bar{b} \vee \bar{c}$	$ar{a}$	
$a \vee \bar{b} \vee c$	c	■ BCP $(\phi \land a \land b) = \bot$
$a \vee \bar{b} \vee \bar{c}$	\perp	■ BCP $(\phi \wedge (\bar{a} \vee \bar{b}) \wedge a) = \bot$
$\bar{a} \vee b \vee c$		■ BCP $(\phi \wedge (\bar{a} \vee \bar{b}) \wedge \bar{a} \wedge \bar{c}) = \bot$
$\bar{a}\vee b\vee\bar{c}$		
$a \vee b \vee c$		
$a \lor b \lor \bar{c}$		

Certification By Reverse Unit Propagation (RUP)

Let C be a clause and ϕ be a propositional formula. Then C is called a RUP clause wrt ϕ iff $BCP(\phi \wedge \bar{C}) = \bot$.

The RUP proof system allows the addition of RUP clauses.

Example

input	learned
$\bar{a} \vee \bar{b} \vee c$	$\bar{a} ee ar{b}$
$\bar{a}\vee\bar{b}\vee\bar{c}$	\bar{a}
$a \vee \bar{b} \vee c$	c
$a \vee \bar{b} \vee \bar{c}$	\perp
$\bar{a} \vee b \vee c$	
$\bar{a}\vee b\vee\bar{c}$	
$a \vee b \vee c$	
$a\vee b\vee \bar{c}$	

■ BCP
$$(\phi \land a \land b) = \bot$$

■ BCP
$$(\phi \wedge (\bar{a} \vee \bar{b}) \wedge a) = \bot$$

■ BCP
$$(\phi \wedge (\bar{a} \vee \bar{b}) \wedge \bar{a} \wedge \bar{c}) = \bot$$

■ BCP
$$(\phi \wedge (\bar{a} \vee \bar{b}) \wedge \bar{a} \wedge c \wedge \top) = \bot$$

Blocked Clauses are Redundant

Definition:

A literal $l \in C$ is blocked in CNF ϕ iff forall $D \in \phi$ with $\bar{l} \in D$, there is a literal k such that $k \in C$ and $\bar{k} \in D$. A clause with a blocked literal is called **blocked clause**.

Blocked Clauses are Redundant

Definition:

A literal $l \in C$ is blocked in CNF ϕ iff forall $D \in \phi$ with $\bar{l} \in D$, there is a literal k such that $k \in C$ and $\bar{k} \in D$. A clause with a blocked literal is called **blocked clause**.

- \blacksquare blocked literal elimination: remove clause with blocked literal l
 - removal of blocked clauses preserves unsatisfiability
 - □ NOT model preserving
- powerful simplification technique
 - simulation of several circuit-level simplification techniques
- generalization of pure literal elimination

Blocked Clauses are Redundant

Definition:

A literal $l \in C$ is blocked in CNF ϕ iff forall $D \in \phi$ with $\bar{l} \in D$, there is a literal k such that $k \in C$ and $\bar{k} \in D$. A clause with a blocked literal is called **blocked clause**.

- lacksquare blocked literal elimination: remove clause with blocked literal l
 - removal of blocked clauses preserves unsatisfiability
 - NOT model preserving
- powerful simplification technique
 - □ simulation of several circuit-level simplification techniques
- generalization of pure literal elimination

Example

the formula

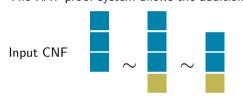
$$(x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

is solvable by blocked clause elimination

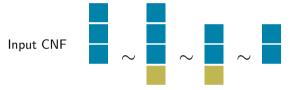
Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .

Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .

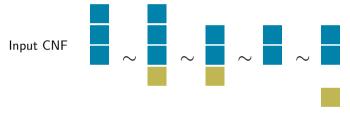
Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .



Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .



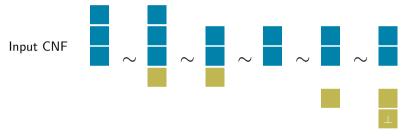
Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .



Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .

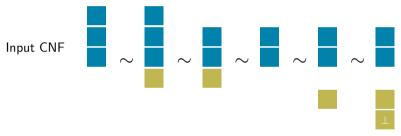
Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .

The RAT proof system allows the addition and deletion of RAT clauses.



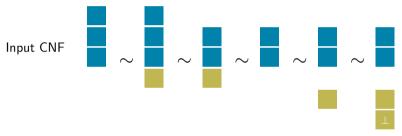
very powerful proof system

Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .



- very powerful proof system
- standard in state-of-the-art SAT solving

Let C be a clause and ϕ be a propositional formula. Then C is called a RAT clause on literal l wrt ϕ iff for all $D \in \phi$ with $\bar{l} \in D$, the resolvent of C and D is a RUP wrt to ϕ .



- very powerful proof system
- standard in state-of-the-art SAT solving
- verified checkers available

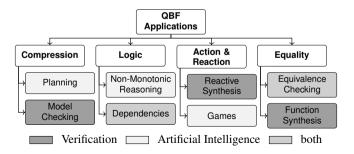
QUANTIFIED BOOLEAN FORMULAS

Quantified Boolean Formulas (QBF)

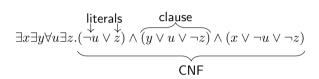
- Extension of propositional logic
 - \square explicit quantifiers (\forall, \exists) over the Boolean variables
- Canonical PSPACE-complete problem
 - □ more succinct encoding than SAT (NP-complete)
- Many application domains: synthesis, AI, verification, ...

Quantified Boolean Formulas (QBF)

- Extension of propositional logic
 - \square explicit quantifiers (\forall, \exists) over the Boolean variables
- Canonical PSPACE-complete problem
 - □ more succinct encoding than SAT (NP-complete)
- Many application domains: synthesis, AI, verification, ...



■ QBFs in Prenex CNF (PCNF):



QBFs in Prenex CNF (PCNF):

$$\exists x\exists y\forall u\exists z.\underbrace{(\neg u\lor z)\land (y\lor u\lor \neg z)\land (x\lor \neg u\lor \neg z)}_{\mathsf{CNF}}$$

QBFs in Prenex DNF (PDNF):

$$\forall x \forall y \exists u \forall z. \underbrace{(u \land \neg z) \lor (\neg y \land \neg u \land z) \lor (\neg x \land u \land z)}_{\mathsf{DNF}}$$

QBFs in Prenex CNF (PCNF):

$$\exists x\exists y\forall u\exists z.\underbrace{(\neg u\vee z)\wedge(y\vee u\vee \neg z)\wedge(x\vee \neg u\vee \neg z)}_{\mathsf{CNF}}$$

QBFs in Prenex DNF (PDNF):

$$\forall x \forall y \exists u \forall z. \underbrace{(u \land \neg z)}_{} \lor (\neg y \land \neg u \land z) \lor (\neg x \land u \land z)$$

QBFs in Prenex Non-CNF

DNF

■ QBFs in Prenex CNF (PCNF):

$$\exists x \exists y \forall u \exists z. \underbrace{(\neg u \lor z) \land (y \lor u \lor \neg z) \land (x \lor \neg u \lor \neg z)}_{\mathsf{CNF}}$$

QBFs in Prenex DNF (PDNF):

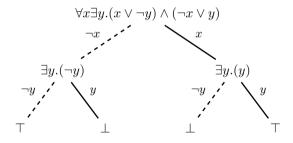
$$\forall x \forall y \exists u \forall z. \underbrace{(u \land \neg z)}_{\text{ONF}} \lor (\neg y \land \neg u \land z) \lor (\neg x \land u \land z)$$

Note: x, y < u < z

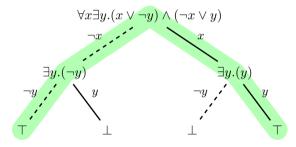
 $\blacksquare \ \forall x \mathcal{Q}. \varphi \ \text{true} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \text{and} \ \mathcal{Q}. \varphi[\neg x] \ \text{true}$

- \blacksquare $\forall x \mathcal{Q}. \varphi$ true $\Leftrightarrow \mathcal{Q}. \varphi[x]$ and $\mathcal{Q}. \varphi[\neg x]$ true
- $\blacksquare \ \exists x \mathcal{Q}. \varphi \ \mathrm{true} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \mathrm{or} \ \mathcal{Q}. \varphi[\neg x] \ \mathrm{true}$

- $\blacksquare \ \forall x \mathcal{Q}. \varphi \ \text{true} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \text{and} \ \mathcal{Q}. \varphi[\neg x] \ \text{true}$
- $\blacksquare \exists x \mathcal{Q}. \varphi \text{ true } \Leftrightarrow \mathcal{Q}. \varphi[x] \text{ or } \mathcal{Q}. \varphi[\neg x] \text{ true}$
- Example:



- $\blacksquare \ \forall x \mathcal{Q}. \varphi \ \text{true} \Leftrightarrow \mathcal{Q}. \varphi[x] \ \text{and} \ \mathcal{Q}. \varphi[\neg x] \ \text{true}$
- $\blacksquare \ \exists x \mathcal{Q}. \varphi \ \mathsf{true} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \mathsf{or} \ \mathcal{Q}. \varphi[\neg x] \ \mathsf{true}$
- Example:



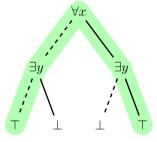
Tree model of **true** formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$



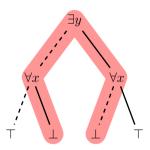
Tree model of **true** formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$



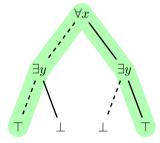
Tree refutation of **false** formula:

$$\exists y \forall x. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$



Tree model of **true** formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

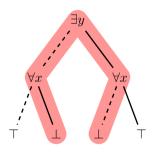


Skolem-functions of ∃-variables:

$$f_y(x) = x$$

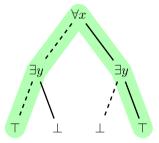
Tree refutation of **false** formula:

$$\exists y \forall x. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$



Tree model of **true** formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

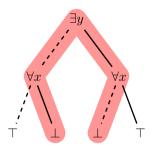


Skolem-functions of \exists -variables:

$$f_y(x) = x$$

Tree refutation of **false** formula:

$$\exists y \forall x. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

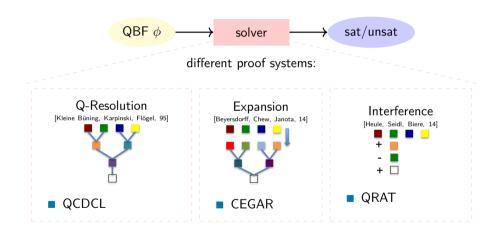


Herbrand-functions of ∀-variables:

$$f_x(y) = \bar{y}$$

Overview: Proof Systems for QBF

Overview: Proof Systems for QBF



Solutions of QBFs

Definition (Dependency):

Let ϕ be a QBF in prenex form and v a variable of ϕ with $quant(v) \in \{\exists, \forall\}$. Then

$$D^{\phi}(v) = \{ w \in vars(\phi) \mid w < v, quant(v) \neq quant(w) \}$$

Solutions of QBFs

Definition (Dependency):

Let ϕ be a QBF in prenex form and v a variable of ϕ with $quant(v) \in \{\exists, \forall\}$. Then

$$D^{\phi}(v) = \{ w \in vars(\phi) \mid w < v, quant(v) \neq quant(w) \}$$

Solutions of false QBFs ϕ (counter-models)

- for all universal variables x_1, \ldots, x_m of ϕ define Herbrand function $f_{x_i}(y_1, \ldots, y_n)$ with $D^{\phi}(x) = \{y_1, \ldots, y_n\}$
- $lack \phi[x_1/f_{x_1},\dots x_m/f_{x_m}]$ is unsat

Solutions of QBFs

Definition (Dependency):

Let ϕ be a QBF in prenex form and v a variable of ϕ with $quant(v) \in \{\exists, \forall\}$. Then

$$D^{\phi}(v) = \{ w \in vars(\phi) \mid w < v, quant(v) \neq quant(w) \}$$

Solutions of false QBFs ϕ (counter-models)

- for all universal variables x_1, \ldots, x_m of ϕ define Herbrand function $f_{x_i}(y_1, \ldots, y_n)$ with $D^{\phi}(x) = \{y_1, \ldots, y_n\}$
- $\phi[x_1/f_{x_1},\ldots x_m/f_{x_m}]$ is unsat

Solutions of true QBF ϕ (models)

- for all existential variables x_1,\ldots,x_m of ϕ define Skolem function $f_{x_i}(y_1,\ldots,y_n)$ with $D^\phi(x)=\{y_1,\ldots,y_n\}$
- $lack \phi[x_1/f_{x_1},\dots x_m/f_{x_m}]$ is valid

How To Get Solutions?

Special case: only values of variables in outermost quantifier are of interest

- false QBF is of form $\forall X \exists Y \Pi. \psi$
- true QBF is of form $\exists X \forall Y \Pi. \psi$

Special case: only values of variables in outermost quantifier are of interest

- false QBF is of form $\forall X \exists Y \Pi. \psi$
- true QBF is of form $\exists X \forall Y \Pi. \psi$
- ⇒ solutions are propositional assignments

Special case: only values of variables in outermost quantifier are of interest

- false QBF is of form $\forall X \exists Y \Pi. \psi$
- true QBF is of form $\exists X \forall Y \Pi. \psi$
- ⇒ solutions are propositional assignments
- ⇒ many solvers are able to produce such assignments

Special case: only values of variables in outermost quantifier are of interest

- false QBF is of form $\forall X \exists Y \Pi. \psi$
- true QBF is of form $\exists X \forall Y \Pi. \psi$
- ⇒ solutions are propositional assignments
- ⇒ many solvers are able to produce such assignments

General case: ???

Special case: only values of variables in outermost quantifier are of interest

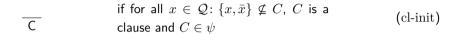
- false QBF is of form $\forall X \exists Y \Pi. \psi$
- true QBF is of form $\exists X \forall Y \Pi. \psi$
- ⇒ solutions are propositional assignments
- ⇒ many solvers are able to produce such assignments

General case: ???

 \Rightarrow extraction of solutions from proofs

Q-Resolution for False Formulas

Clause Axiom



Q-Resolution for False Formulas

Clause Axiom

Resolution Rule

$$\frac{C_1 \cup \{p\} \qquad C_2 \cup \{\bar{p}\}}{C_1 \cup C_2} \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \bar{p} \notin C_1, \ p \notin C_2, \ \text{and} \\ C_1, C_2 \text{ are clauses, quant}(\mathcal{Q}, p) = \exists$$
 (res)

Q-Resolution for False Formulas

Clause Axiom

Resolution Rule

$$\frac{C_1 \cup \{p\} \qquad C_2 \cup \{\bar{p}\}}{C_1 \cup C_2} \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \bar{p} \not\in C_1, \ p \not\in C_2, \ \text{and} \\ C_1, C_2 \ \text{are clauses, quant} (\mathcal{Q}, p) = \exists$$
 (res)

Universal Reduction

$$\frac{C \cup \{l\}}{\mathsf{C}} \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C \cup \{l\}) \text{ and either } \\ C \text{ is a clause, } \operatorname{quant}(\mathcal{Q}, l) = \forall, \\ l' <_{\mathcal{Q}} l \text{ for all } l' \in C \text{ with } \operatorname{quant}(\mathcal{Q}, l') = \exists \text{ or } \\ \end{cases}$$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

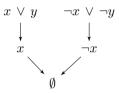
Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

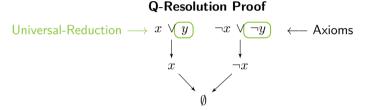
x	y	ψ	
0	0	0	
0	1	1	false
1	0	1	Taise
1	1	0	

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

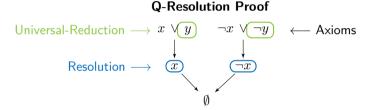
Q-Resolution Proof



Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$



Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

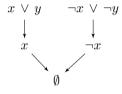


Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

x	y	ψ	
0	0	0	
0	1	1	false
1	0	1	Talse
1	1	0	

Q-Resolution Proof



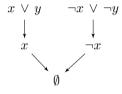
$$\longrightarrow y = x \Rightarrow \psi = 0$$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

x	y	ψ	
0	0	0	
0	1	1	false
1	0	1	Talse
1	1	0	

Q-Resolution Proof

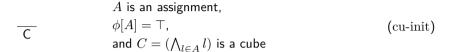


$$\longrightarrow \quad y = x \quad \Rightarrow \quad \psi = 0$$

$$\longrightarrow f_y(x) = x$$
 (counter model)

Q-Resolution for True Formulas

Cube Axiom



Q-Resolution for True Formulas

Cube Axiom

$$A$$
 is an assignment,
$$\phi[A] = \top, \qquad \qquad \text{(cu-init)}$$
 and $C = (\bigwedge_{l \in A} l)$ is a cube

Resolution Rule

$$\frac{C_1 \cup \{p\} \qquad C_2 \cup \{\bar{p}\}}{C_1 \cup C_2} \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \bar{p} \not\in C_1, \ p \not\in C_2, \ \text{and} \\ C_1, C_2 \ \text{are cubes, quant} (\mathcal{Q}, p) = \forall$$
 (res)

Q-Resolution for True Formulas

Cube Axiom

$$A$$
 is an assignment,
$$\phi[A] = \top, \qquad \qquad \text{(cu-init)}$$
 and $C = (\bigwedge_{l \in A} l)$ is a cube

Resolution Rule

$$\frac{C_1 \cup \{p\} \qquad C_2 \cup \{\bar{p}\}}{C_1 \cup C_2} \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \bar{p} \notin C_1, \ p \notin C_2, \ \text{and} \\ C_1, C_2 \text{ are cubes, quant}(\mathcal{Q}, p) = \forall$$
 (res)

Existential Reduction

$$\frac{C \cup \{l\}}{\mathsf{C}} \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C \cup \{l\}) \text{ and either } \\ C \text{ is a cube, } \mathsf{quant}(\mathcal{Q}, l) = \exists, \\ l' <_{\mathcal{Q}} l \text{ for all } l' \in C \text{ with } \mathsf{quant}(\mathcal{Q}, l') = \forall$$

■ QCDCL solver produce Q-resolution proofs of empty clause/cube

- QCDCL solver produce Q-resolution proofs of empty clause/cube
- From proof P Skolem/Herbrand function can be obtained

- QCDCL solver produce Q-resolution proofs of empty clause/cube
- From proof P Skolem/Herbrand function can be obtained
- Runtime of extraction is linear in the size of P (but size of P can be exponential!!!)

- QCDCL solver produce Q-resolution proofs of empty clause/cube
- From proof P Skolem/Herbrand function can be obtained
- Runtime of extraction is linear in the size of P (but size of P can be exponential!!!)

- Approach by Jiang and Balabanov (CAV 2011):
 - □ Visit clauses of P in topological ordering
 - □ Inspect universal (existential) reduction steps
 - □ Update functions of reduced variables

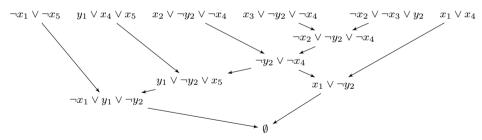
Input Formula

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \lor \neg x_5) \land (y_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg y_2 \lor \neg x_4) \land (x_3 \lor \neg y_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor y_2) \land (x_1 \lor x_4)$$

Input Formula

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \lor \neg x_5) \land (y_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg y_2 \lor \neg x_4) \land (x_3 \lor \neg y_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor y_2) \land (x_1 \lor x_4)$$

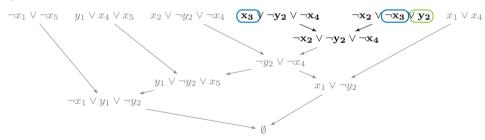
Q-Resolution Proof DAG



Input Formula

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \lor \neg x_5) \land (y_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg y_2 \lor \neg x_4) \land (x_3 \lor \neg y_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor y_2) \land (x_1 \lor x_4)$$

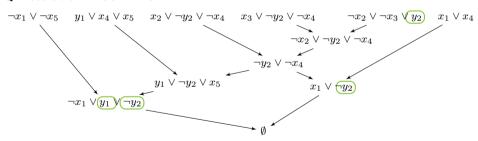
Q-Resolution Proof DAG



Input Formula

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \lor \neg x_5) \land (y_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg y_2 \lor \neg x_4) \land (x_3 \lor \neg y_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor y_2) \land (x_1 \lor x_4)$$

Q-Resolution Proof DAG



Extracted Herbrand Functions

$$\begin{cases} f_{y_1}(x_1) = \neg x_1 \\ f_{y_2}(x_2, x_3) = \neg x_2 \lor \neg x_3 \end{cases}$$
 Certificate

SUMMARY

Summary:

- proof theory is important for practical solving
 - $\ \square$ it explains what solvers do
 - □ it gives a tool for checking the solving result
- improvement of the quality of solvers
- standard in SAT solving, in progress for QBF

Summary:

- proof theory is important for practical solving
 - □ it explains what solvers do
 - □ it gives a tool for checking the solving result
- improvement of the quality of solvers
- standard in SAT solving, in progress for QBF

Challenges:

- proof size
- parallel solving
- heterogeneity in QBF solving approaches