

Towards an Automated Qualitative and Quantitative Analyses of $\mathbf{J}^{\mathbf{B}}$

Raphael J.F. Berger

Paris-Lodron Universität Salzburg

MAGIC V, Frauenwörth, 11.09.2024

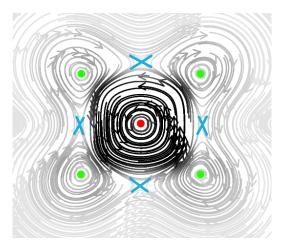
Motivation

Electron Density Analogy

- physically relevant electronic properties (energy, elektrostatic moments, ...) are uniquely determined and computable from ρ .
- functions of the magnetic response like \mathcal{W} , σ or χ are uniquely determined and computable from $\mathbf{J}^{\mathbf{B}}$.

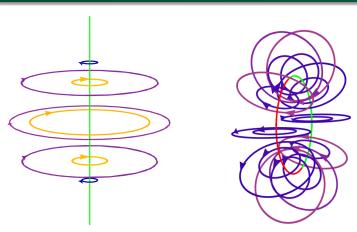
ho can be characterized by Baders QT-AIM[†] methods in both a **qualitative** (=topological) and **quantitative** manner.

To date there is no such "theory" or method bundle to analyze J^B in a similar manner.


^{†)} Bader, R. (1991). "A quantum theory of molecular structure and its applications". Chemical Reviews. 91 (5): 893–928.

State of Knowledge

Stagnation Points (2D example)

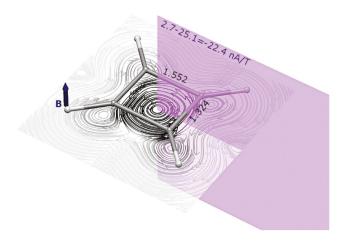


$$SP = \{\mathbf{r}_0 | \mathbf{J}^{\mathbf{B}}(\mathbf{r}_0) = 0\}$$

- diatropic ringcritical SP
- paratropic ringcritical SP
- × saddle point

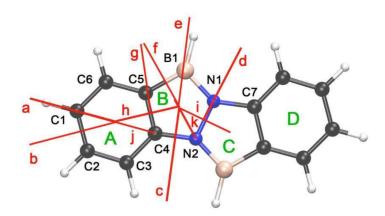
Stagnation Graph (SG)

J. A. N. F. Gomes, Phys. Rev. A 28 (1984) 559; S. Pelloni, P. Lazzeretti, R. Zanasi, Theor. Chem. Acc. 123 (2011) 353.

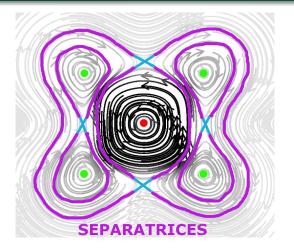

The Stagnation Graph (SG)

Current (Flux) Integrals

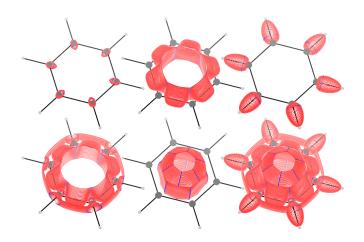
Current Density Domains (Vortices)



Common Integration Methods


Example from the literature

The Stagnation Graph (SG)
Current (Flux) Integrals
Current Density Domains (Vortices)

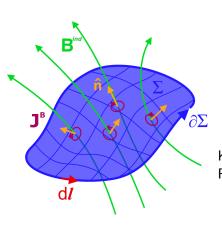

Separatrix Surfaces / Current Density Domains / Vortices

The Stagnation Graph (SG)
Current (Flux) Integrals
Current Density Domains (Vortices)

Separatrix Surfaces

G. Monaco, R. Zanasi, J. Phys. Chem. A 123, 8 (2019) 4558.

'Ampére-Maxwell Integration' Current Density Domains in the SG Oriented Flux-Weighted SG



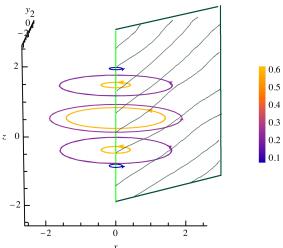
New Results

'Ampére-Maxwell Integration' Current Density Domains in the SG Oriented Flux-Weighted SG

'Ampére-Maxwell-Integration' – Theorie

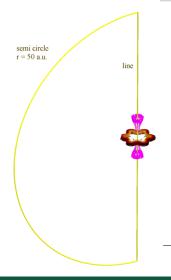
$$\mathbf{B}^{ind} = - \begin{pmatrix} NICS_{xz} \\ NICS_{yz} \\ NICS_{zz} \end{pmatrix}$$

$$\mathbf{J}^{\mathbf{B}} = \mu_0^{-1} \nabla \times \mathbf{B}^{ind}$$
 (D-AM)


Kelvin-Stokes theorem \Rightarrow "integral Form" of the AM

$$\iint_{\Sigma} \mathbf{J}^{\mathbf{B}} \cdot \mathrm{d}\mathbf{\hat{n}} = \mu_0^{-1} \oint_{\partial \Sigma} \mathbf{B}^{ind} \cdot \mathrm{d}\mathbf{I} \ \ (\text{I-AM})$$

Berger, Dimitrova, Nasibullin, Valiev, Sundholm PCCP 24 (2022) 624.

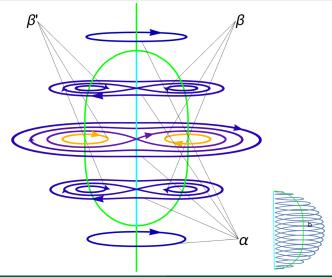


'Ampére-Maxwell-Integration' – Example

'Ampére-Maxwell-Integration' – Application Benzene

height	path integral for path		
	semi circle	line	semicircle \cup line
50	0.01821	11.20840	11.22661
100	0.00457	11.23570	11.24027
200	0.00107	11.24250	11.24357
400	-0.00000	11.24420	11.24420

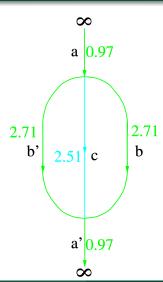
Table 2 Numerical convergence of total current integral in benzene depending on the integration path height (given in atomic units) on the z axis. Current flux (susceptibility) values are given in nA/T. The support points of the numerical path integrals for height of 50 a.u. is shown in


$$\Phi \approx \mu_0^{-1} \sum_{k=-n}^{n} \text{NICS}_{zz}(k)$$
$$\mu_0^{-1} = 0.042110$$

$$C_6H_6$$
, $n=100 \Rightarrow 11.21$ vs 11.24 nA/T a

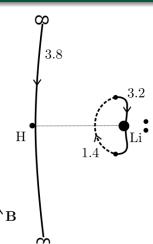
^aBerger, Dimitrova PCCP (2022) 24 23089.

Current Density Domains in the SG - 1



Current Density Domains in the SG - 2

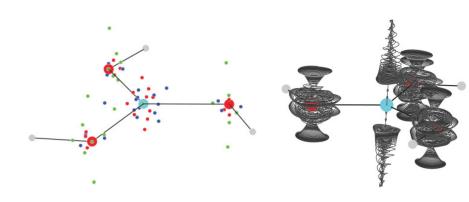
- Boundaries of surfaces through which the total current of a current vortex domain flows can be constructed from segments of the stagnation graph.
- Each current vortex is represented in the stagnation graph in this way. (conjecture)
- Note: The motif of nested vortices is quite common.


The Oriented Flux-Weighted Stagnation Graph

The Oriented Flux-Weighted Stagnation Graph: LiH

'Ampére-Maxwell Integration' Current Density Domains in the SG Oriented Flux-Weighted SG

Mission completed — isn't it?

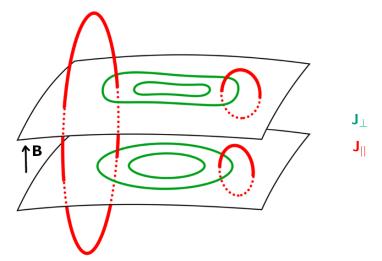


Problem (and Approach to Solutions)

$B(OH)_3$

The Ugly = The Good + The Bad

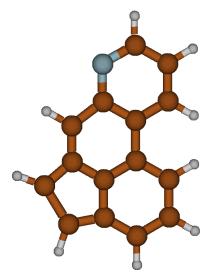
"Magnetic Decomposition" of $\mathbf{J}^{\mathbf{B}}$ with $\mathbf{B} = (0,0,1)^T$


$$\mathbf{J}^{\mathbf{B}} = \mu_0^{-1} \nabla \times \mathbf{B}^{ind}$$

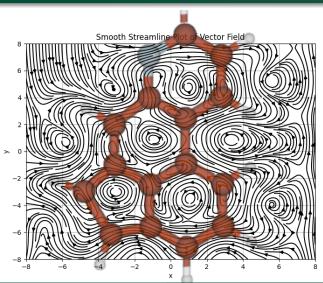
$$= \mu_0^{-1} \nabla \times \left(\begin{pmatrix} 0 \\ 0 \\ B_z \end{pmatrix} + \begin{pmatrix} B_x \\ B_y \\ 0 \end{pmatrix} \right)$$
(AM)

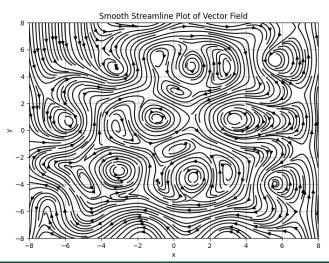
$$= \underbrace{\mu_0^{-1} \begin{pmatrix} \partial_y B_z \\ -\partial_x B_z \\ 0 \end{pmatrix}}_{:=\mathbf{J}_{\perp}} + \underbrace{\mu_0^{-1} \begin{pmatrix} -\partial_z B_y \\ \partial_z B_x \\ \partial_x B_y - \partial_y B_x \end{pmatrix}}_{:=\mathbf{J}_{||}}$$
 (MZ)

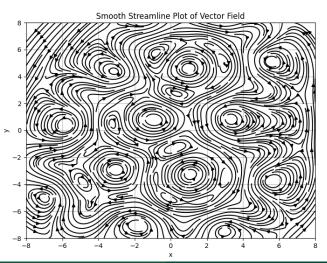
MD Graphically


MD — Properties

- ullet ${f J}_{\perp}$ and ${f J}_{\parallel}$ are solenoidal.
- J_{\parallel} does not contribute to the magnetization energy.
- \bullet J_{\parallel} does not contribute to the magnetic susceptibility.
- J_{\perp} has nicely (branched) stagnation *lines*.
- alternatives exist (see James' poster).


Example **J** vs J_{\perp} (via D-AM)

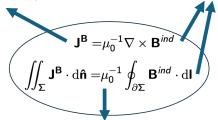

Example **J** vs J_{\perp}



J (The Ugly)

$\overline{\mathbf{J}_{\perp}}$ (The Good)

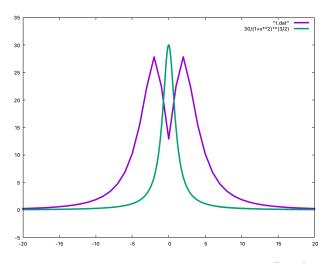
Summary


1

2

New method to compute J^B e.g. TM, via chem. Shieldings, Relativity, divergence-free;

3


Oriented flux weighted stagnation graphs represent the QT-AIM analog of molecular graphs for the density

new more efficient method to compute flux integrals of **J^B**; very simple and fast for planar symmetric rings, but also rectangular boundaries for complex problems, no **J^B** required. X2C, ...

A word on NICS

Acknowledgement

- Dr. Maria Dimitrova (HU)
- Prof. Dr. Simon Blatt (PLUS)
- Prof. Dr. Dage Sundholm (HU)
- Prof. em. Dr. Riccardo Zanasi (UNISA)
- Dr. James Asher (SAS)
- ...

Wann Stagnationslinien?

- one e⁻ case, lines are expected^a
- rough dimensional analysis (3 equations for 3 unknowns) suggests isolated points
- Preimage theorem (using the rank of the differential of the map) says isolated points
- J_z is purely "paratropic" \Rightarrow lines for diamagnetic cases
- symmetry enforces sometimes local "diamagneticity" or at least $J_z=0$

(Philosophical) Q&A

- Which flux (integrals) make sense?
- Are there "bond currents"?
- There are separable vortices (via separatrix surfaces).
- "Current domain" = "separate vortex"
- Closed loops in stagnation graphs! (conjectural)
- What if only separate stagnation points?
- Rigorouos answer or ... (mind: Topology is unstable against small perturbations (bondpaths))

