Transmission of spin-polarization by π -orbitals: an approach to assessing its effect on NMR spin-spin coupling and EPR hyperfine structure

<u>Vladimir Malkin</u> & Olga Malkina

Department of theoretical chemistry, Institute of Inorganic chemistry, Slovak Academy of Sciences, Bratislava, Slovakia

Olga L. Malkina, Florian Lemken, James R. Asher, Jean-Cyrille Hierso, Michael Bühl and Vladimir G. Malkin, Phys. Chem. Chem. Phys., 2022, 24, 24039

 Dedicated to the memory of Prof. Paul von Ragué Schleyer

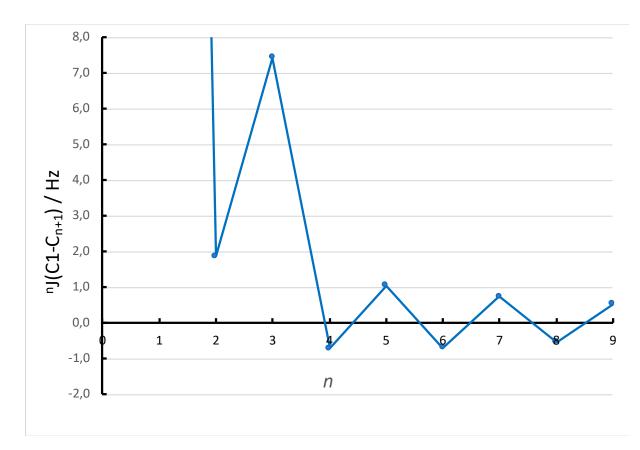
Acknowledgments

People

- Olga Malkina
- Florian Lemken
- James R. Asher
- Michael Bühl
- Jean-Cyrille Hierso

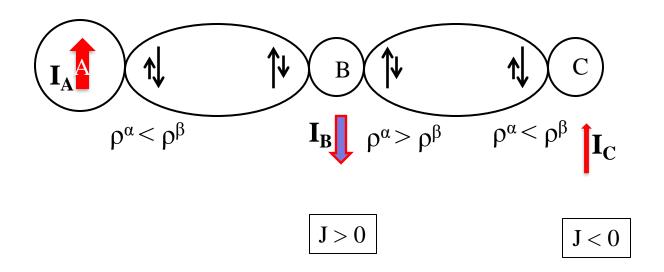
Money:

VEGA-2/0135/21 APVV-19-0516



Frequently asked questions

- \triangleright What is the role of π -MOs in NMR spin—spin coupling?
- \succ Which effects govern the propagation of spin-polarization through $\pi\text{-MOs}$?
- \succ Why there is a sign-alternation pattern of spin-polarization going via π -MOs?

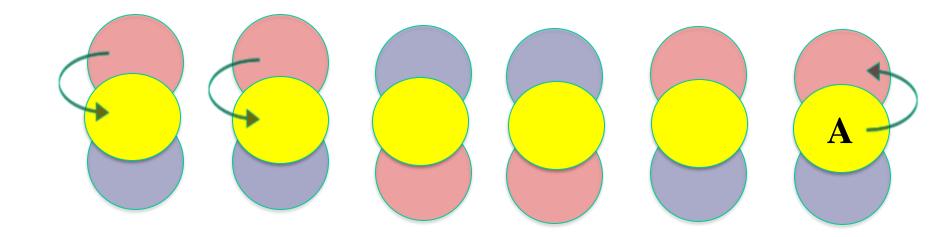

$$J_{AB} \sim \sum_{k,a} \frac{\langle \varphi_k^0 | \widehat{H}_{FC}(A) | \varphi_a^0 \rangle \langle \varphi_a^0 | \widehat{H}_{FC}(B) | \varphi_k^0 \rangle}{\varepsilon_k - \varepsilon_a}$$

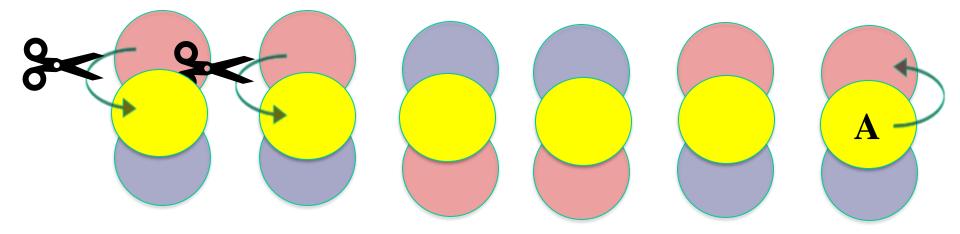
$$H_{FC}(A) = \frac{8\pi\alpha^2}{3} \delta(r_{Ai}) \cdot \hat{S}_{iz}$$

 $^{n}J_{FC}(C_{1}-C_{n+1})$ in 1,3,5,7,9-decapentaene as a function of the number of bonds separating the two carbons (in Hz).

The Dirac vector model for spin-polarization induced by the nuclear magnetic moment (FC mechanism)

E. Duval, S. Koide, Phys. Letters, 1964, 8, 314


We start with a close shell system !!!


$$H_{FC} = \frac{8\pi\alpha^2}{3} \, \delta(r_{Ni}) \cdot \hat{S}_{iz}$$

$$K_{ij}$$
, V_{xc}

In case of GGA functionals

$$V_{xc}(oldsymbol{
ho}$$
 , $oldsymbol{
ho}^{lpha-oldsymbol{eta}})$

$$H_{FC} = \frac{8\pi\alpha^2}{3} \, \delta(r_{Ni}) \cdot \hat{S}_{iz}$$

$$K_{ij}$$
, V_{xc}

In case of GGA functionals

$$V_{xc}(
ho$$
 , $ho^{lpha-eta})$

Contribution to V_{xc} from π MOs

$$V_{xc}(\boldsymbol{\rho})$$

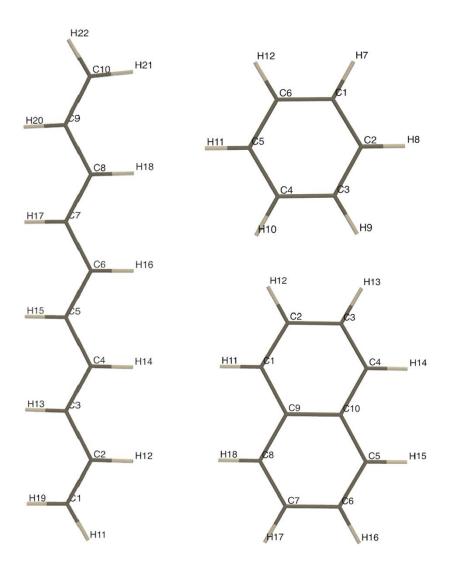


Fig. 1 Molecular structure and the numbering of atoms in 1,3,5,7,9-decapentaene (left), benzene (top right) and naphthalene (bottom right). The 1,3,5,7,9-decapentaene radical considered in this work is obtained from 1,3,5,7,9-decapentaene by removing atom H19

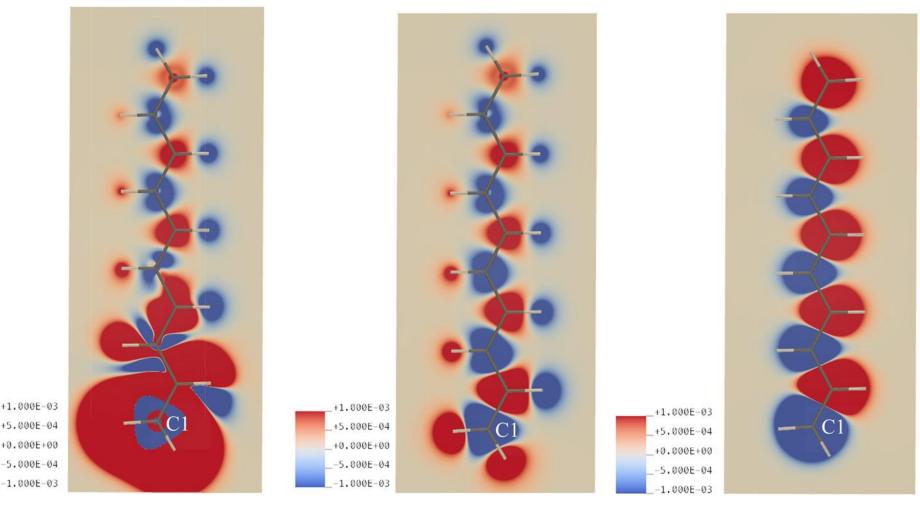
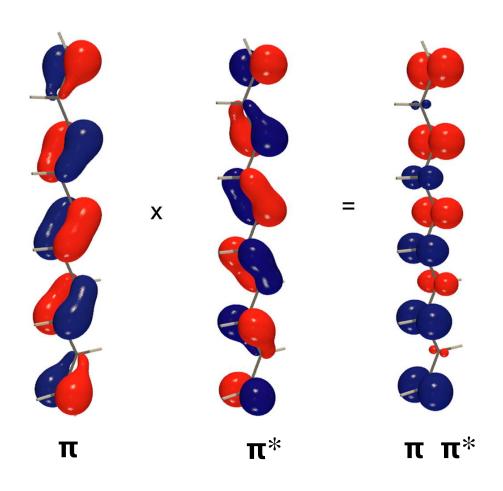


Fig. 3 The *spin-density* in 1,3,5,7,9-decapentaene induced by FC(C1) (color-coded according to the density values, given in a.u.).

Left: The total spin-density -- shown in the molecular plane.


Middle: spin-polarization only due to the π -TSP effect (middle) -- shown in the molecular plane.

Right: spin-polarization of the group of π -orbitals -- shown in the plane 0.5 Å. below the molecular plane.

$$\pi'_{\alpha} \approx \pi + \lambda \pi^*$$

$$\pi'_{\beta} \approx \pi - \lambda \pi^*$$

$$\rho_{\alpha} - \rho_{\beta} \approx (\pi + \lambda \pi^*)^2 - (\pi - \lambda \pi^*)^2 = 4\lambda \pi \pi^*.$$

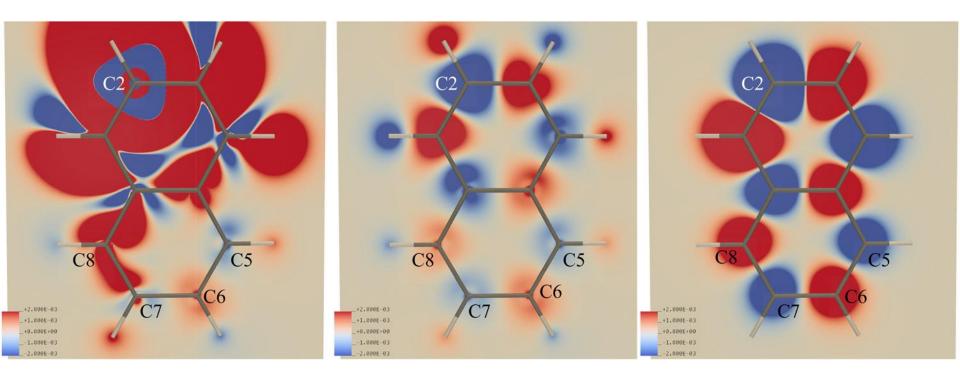


Fig. 6 The spin-density in naphthalene induced by FC(C2) (color-coded according to the density values, given in a.u.).

Left: the total spin-density (is shown in the molecular plane).

Middle: spin-polarization only due to the π -TSP effect (is shown in the molecular plane).

Right: the spin-polarization of the group of π -orbitals is shown in the plane 0.5 . below the molecular plane.

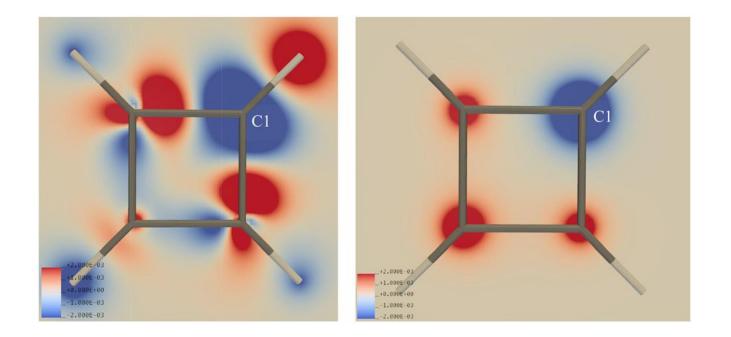


Fig. 7 The spin density in cyclobutadiene dication induced by FC(C1). Color-coded according to the density values given in a.u.

Left: The π -TSP effect on the spin density in cyclobutadiene dication induced by FC(C1)

Right: spin-polarization of the group of π -orbitals in the plane 0.5 Å below the molecular plane

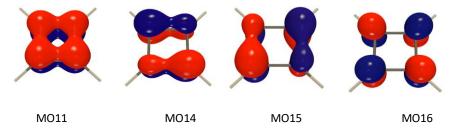
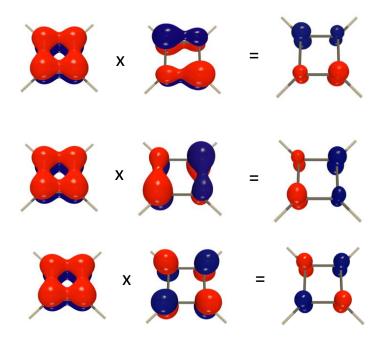
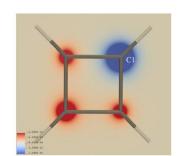




Figure S5. The occupied p-orbital (MO11) and the lowest vacant p-orbitals (MO14, MO15 and MO16) of a cyclobutadienyl dication. The isosurface value 0.1~a.u..

MO11 x MO14 + MO11 x MO15 + MO11 x MO16 =

Conclusions

- \checkmark A new DFT-based approach assessing the effect of the transmission of spin-polarization by π -orbitals (π -TSP) was developed.
- ✓ This approach is applicable to the analysis of molecular properties that depend on the effects of spin-polarization (i.e, NMR spin-spin couplings, EPR hyperfine couplings, etc.).
- \checkmark It is based on simple switching off the contribution of π -MOs to the spin polarization.
- \checkmark To the best of our knowledge, the sign alternation of the π-TSP effect on spin-spin couplings was explained for the first time based on perturbation theory and Hund's rule.
- ✓ We have also identified exceptions to this pattern, where for identifiable reasons spin-polarization delocalization effects occur across a cyclic π -system, interfering with the usual sign-alternating pattern.

Hyperfine structure (open shell systems)

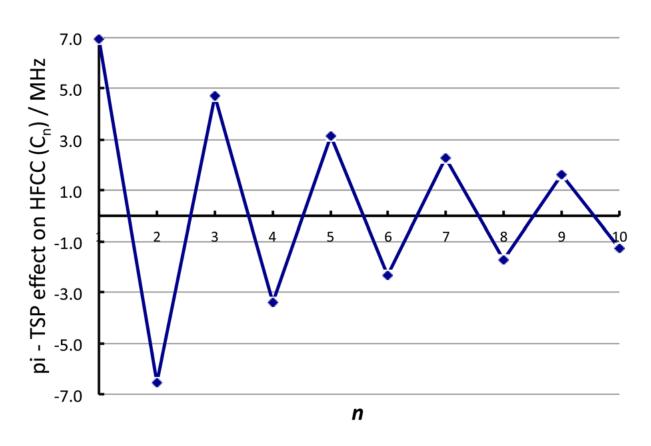
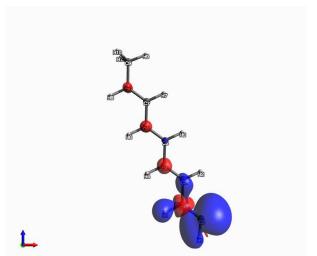


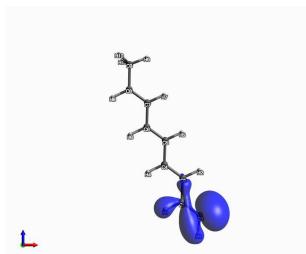
Fig. 10 The π -TSP effect on ¹³C HFCC (in MHz) in the 1,3,5,7,9-decapentaen-1-yl radical. The values on the horizontal axis correspond to the numbering of carbons in Fig. 1, left.

Fig. 11 The spin-density of the 1,3,5,7,9-decapentaene-1-yl radical (in the radical plane).

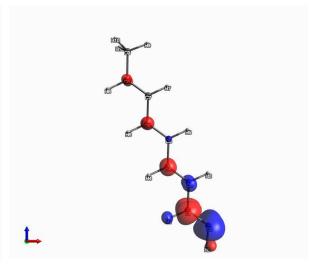
Left: The total spin-density of the 1,3,5,7,9-decapentaene-1-yl radical


in the radical plane.

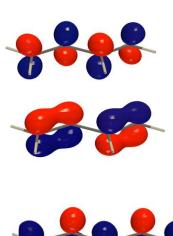
Middle: the spin-density due-to the π -TSP effect .

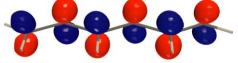

Right: the spin-density when π -TSP effect is switched off .

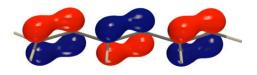
"Spin-delocalization" and "spin-polarization"

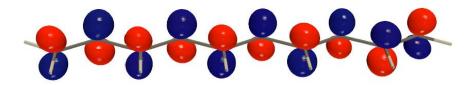

Definition: restricted versus unrestricted (for now) or something else?

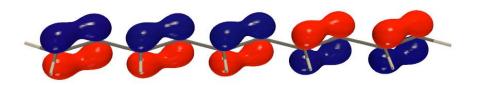
Unrestricted spin-density (Isosurface value =0.002)




Restricted SOMO (Isosurface value=0.002)




Difference (Isosurface value=0.002)


HFCC(MHz	C1	C2	C3	C4	C5	C6	C7	C8
UKS	429.10	4.02	45.93	-4.94	2.68	-2.04	1.79	-1.58
RKS	421.50	38.41	35.95	0.12	0.170	0.28	0.02	0.01
Diff.	7.6	-34.39	6.98	-5.06	2.51	-2.32	1.77	-1.59

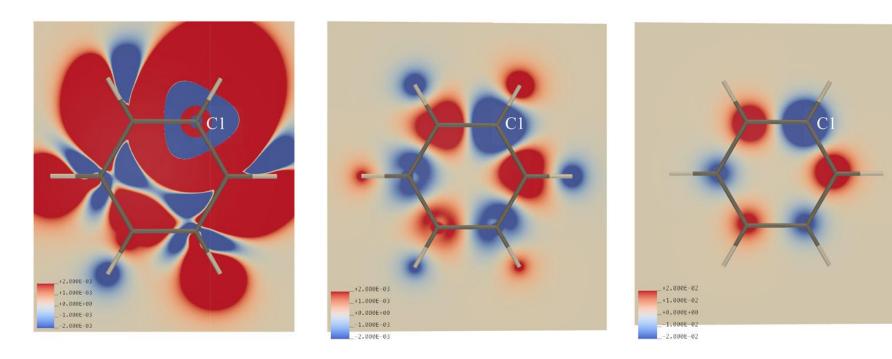


Fig. 5 The spin-density in benzene induced by FC(C1) (color-coded according to the density values, given in a.u.).

Left: the total spin-density (in the molecular plane).

Middle: spin polarization only due to the π -TSP (in the molecular plane).

Right: the spin-polarization of the group of π -orbitals is shown in the

plane 0.5 Å below the molecular plane.

CDD

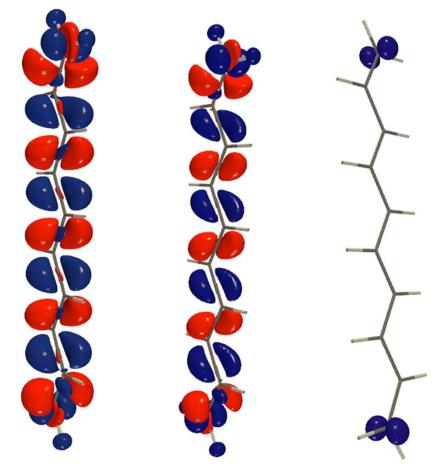


Fig. 8 CDD for ⁹J(C1–C10) in 1,3,5,7,9-decapentaene:

Left: the total CDD

Middle: the CDD due to the π -TSP effect (middle)

Right: the CDD when the π -TSP effect is switched off

The isosurface value in all plots is 0.001 a.u.