Daniel Hölbling

Daniel Hölbling
Senior Scientist & Project Manager

Head of Risk, Hazard & Climate Research Group
Schillerstrasse 30, 5020 Salzburg

Tel.: +43 (0) 662 / 8044 – 7581
Fax.: +43 (0) 662 / 8044 – 7560
E-Mail:

 

Research Interests

Object-based image analysis (OBIA) | Remote Sensing | Integrated multi-scale analysis of various remote sensing data (optical, SAR, DEM) | Landslides | Natural Hazards | Geomorphology | Glaciers | Spatio-temporal landscape dynamics

Publications

Peer-reviewed Journal Articles (selected)

  • Stammler, M., Stevens, T., Hölbling, D., 2023. Geographic object-based image analysis (GEOBIA) of the distribution and characteristics of aeolian sand dunes in Arctic Sweden. Permafrost and Periglacial Processes, 34, 1, 22‐36.  https://doi.org/10.1002/ppp.2169
  • Emmer, A., Hölbling, D., Abad, L., Štěpánek, P., Zahradníček, P., Emmerová, I., 2022. Landslides associated with recent road constructions in the Río Lucma catchment, eastern Cordillera Blanca, Peru. Annals of the Brazilian Academy of Sciences, 94, 3, e20211352.  https://doi.org/10.1590/0001-3765202220211352
  • Donkor, F.K., Mitoulis, S.-A., Argyroudis, S., Aboelkhair, H., Canovas, J.A.B., Bashir, A., Cuaton, G.P., Diatta, S., Habibi, M., Hölbling, D., Manuel, L., Pregnolato, M., Ribeiro, R.R.R., Sfetsos, A., Shahzad, N., Werner, C., 2022. SDG Final Decade of Action: Resilient Pathways to Build Back Better from High-Impact Low-Probability (HILP) Events. Sustainability, 14, 15401.  https://doi.org/10.3390/su142215401
  • Argentin, A.-L., Hauthaler, T., Liebl, M., Robl, J., Hergarten, S., Prasicek, G., Salcher, B., Hölbling, D., Pfalzner-Gibbon, C., Mandl, L., Maroschek, M., Abad, L., Dabiri, Z., 2022. Influence of rheology on landslide-dammed lake impoundment and sediment trapping: Back-analysis of the Hintersee landslide dam. Geomorphology, 414, 108363.  https://doi.org/10.1016/j.geomorph.2022.108363
  • Hennig, S., Abad, L., Hölbling, D., Tiede, D., 2022. Citizen science and geomorphology: the citizenMorph pilot system for observing and reporting data on landforms. Environmental Research Letters, 17, 8, 085004.  https://doi.org/10.1088/1748-9326/ac8235
  • Dittrich, J., Hölbling, D., Tiede, D., Sæmundsson, Þ., 2022. Inferring 2D Local Surface-Deformation Velocities Based on PSI Analysis of Sentinel-1 Data: A Case Study of Öræfajökull, Iceland. Remote Sensing, 14, 3166.  https://doi.org/10.3390/rs14133166
  • Abad, L., Hölbling, D., Albrecht, F., Dias, H.C., Dabiri, Z., Reischenböck, G., Tešić, D., 2022. Mass movement susceptibility assessment of alpine infrastructure in the Salzkammergut area, Austria. International Journal of Disaster Risk Reduction, 76, 103009.  https://doi.org/10.1016/j.ijdrr.2022.103009
  • Hölbling, D., 2022. Data and knowledge integration for object-based landslide mapping – challenges, opportunities and applications. gis.Science. Die Zeitschrift für Geoinformatik, 1, 1-13. [ pdf]
  • Robson, B.A., Hölbling, D., Nielsen, P.R., Koller, M., 2022. Estimating the volume of the 1978 Rissa quick clay landslide in Central Norway using historical aerial imagery. Open Geosciences, 14, 252-263.  https://doi.org/10.1515/geo-2020-0331
  • Abad, L., Hölbling, D., Spiekermann, R., Prasicek, G., Dabiri, Z., Argentin, A.-L., 2022. Detecting landslide-dammed lakes on Sentinel-2 imagery and monitoring their spatio-temporal evolution following the Kaikōura earthquake in New Zealand. Science of The Total Environment, 820, 153335.  https://doi.org/10.1016/j.scitotenv.2022.153335
  • Dias, H.C., Hölbling, D., Grohmann, C.H., 2021. Landslide Susceptibility Mapping in Brazil: A Review. Geosciences, 11, 10, 425.  https://doi.org/10.3390/geosciences11100425
  • Karantanellis, E., Marinos, V., Vassilakis, E., Hölbling, D., 2021. Evaluation of Machine Learning Algorithms for Object-Based Mapping of Landslide Zones Using UAV Data. Geosciences, 11, 305.  https://doi.org/10.3390/geosciences11080305
  • Dabiri, Z., Hölbling, D., Abad, L., Guðmundsson, S., 2021. Comparing the Applicability of Sentinel-1 and Sentinel-2 for Mapping the Evolution of Ice-marginal Lakes in Southeast Iceland. GI_Forum, 9, 1, 46-52.  https://doi.org/10.1553/giscience2021_01_s46
  • Argentin, A.-L., Robl, J., Prasicek, G., Hergarten, S., Hölbling, D., Abad, L., Dabiri, Z., 2021. Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps. Natural Hazards and Earth System Sciences, 21, 1615-1637.  https://doi.org/10.5194/nhess-21-1615-2021
  • Hennig, S., Hölbling, D., Abad, L., Tiede, D., 2021. Contributory Bürgerwissenschaften und naturräumliche Fragestellungen. Empfehlungen zur Umsetzung webbasierter Anwendung am Beispiel des citizenMorph Projektes. Naturschutz und Landschaftsplanung, 4/2021, 14-23.  https://doi.org/10.1399/NuL.2021.04.01
  • Fleischer, F., Otto, J.-C., Junker, R.R., Hölbling, D., 2021. Evolution of debris cover on glaciers of the Eastern Alps, Austria, between 1996 and 2015. Earth Surface Processes and Landforms, 1-21.  https://doi.org/10.1002/esp.5065
  • Meena, S.R., Albrecht, F., Hölbling, D., Ghorbanzadeh, O., Blaschke, T., 2021. Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal. Natural Hazards and Earth System Sciences, 21, 301-316.  https://doi.org/10.5194/nhess-21-301-2021
  • Dabiri, Z., Hölbling, D., Abad, L., Helgason, J.K., Sæmundsson, Þ., Tiede, D., 2020. Assessment of Landslide-Induced Geomorphological Changes in Hítardalur Valley, Iceland, Using Sentinel-1 and Sentinel-2 Data. Applied Sciences, 10, 5848.  https://doi.org/10.3390/app10175848
  • Robson, B.A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., Schaffer, N., 2020. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 250, 112033.  https://doi.org/10.1016/j.rse.2020.112033
  • Emmer, A., Klimeš, J., Hölbling, D., Abad, L., Draebing, D., Skalák, P., Štěpánek, P., Zahradníček, P., 2020. Distinct types of landslides in moraines associated with the post-LIA glacier thinning: Observations from the Kinzl Glacier, Huascarán, Peru. Science of The Total Environment, 739, 139997.  https://doi.org/10.1016/j.scitotenv.2020.139997
  • Gudiyangada Nachappa, T., Kienberger, S., Meena, S.R., Hölbling, D., Blaschke, T., 2020. Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 11(1), 572-600.  https://doi.org/10.1080/19475705.2020.1736190
  • Hölbling, D., Abad, L., Dabiri, Z., Prasicek, G., Tsai, T.-T., Argentin, A.-L., 2020. Mapping and Analyzing the Evolution of the Butangbunasi Landslide Using Landsat Time Series with Respect to Heavy Rainfall Events during Typhoons. Applied Sciences, 10(2), 630.  https://doi.org/10.3390/app10020630
  • Kothencz, G., Albrecht, F., Hölbling, D., Pürmayr, K., Osberger, A., 2018. Integrated analysis of urban green spaces and recreation areas: transferability and applicability. Acta Horticulturae, 1215, 319-324.  http://dx.doi.org/10.17660/ActaHortic.2018.1215.59
  • Hölbling, D., Eisank, C., Albrecht, F., Vecchiotti, F., Friedl, B., Weinke, E., Kociu, A., 2017. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences, 7(2), 37.  http://dx.doi.org/10.3390/geosciences7020037
  • Hölbling, D., Betts, H., Spiekermann, R., Phillips, C., 2016. Identifying Spatio-Temporal Landslide Hotspots on North Island, New Zealand, by Analyzing Historical and Recent Aerial Photography. Geosciences, 6, 48.  http://dx.doi.org/10.3390/geosciences6040048
  • Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., Del Conte, S., Friedl, B., Schneiderbauer, S., Iasio, C., Vlcko, J., Greif, V., Proske, H., Granica, K., Falco, S., Lozzi, S., Mora, O., Arnaud, A., Novali, F., Bianchi, M., 2016. Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 4, 92-108.  http://dx.doi.org/10.1016/j.rsase.2016.07.001
  • Hagenlocher, M., Hölbling, D., Kienberger, S., Vanhuysse, S., Zeil, P., 2016. Spatial assessment of social vulnerability in the context of landmines and explosive remnants of war in Battambang province, Cambodia. International Journal of Disaster Risk Reduction, 15, 148-161.  http://dx.doi.org/10.1016/j.ijdrr.2015.11.003
  • Robson, B.A., Hölbling, D., Nuth, C., Strozzi, T., Dahl, S.O., 2016. Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis. Remote Sensing, 8(1), 67.  http://dx.doi.org/10.3390/rs8010067  
  • Robson, B.A., Nuth, C., Dahl, S.O., Hölbling, D., Strozzi, T., Nielsen, P.R., 2015. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372-387.  http://dx.doi.org/10.1016/j.rse.2015.10.001
  • Hölbling, D., Friedl, B., Eisank, C., 2015. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Science Informatics, 8 (2), 327-335.  http://dx.doi.org/10.1007/s12145-015-0217-3
  • Blaschke, T., Feizizadeh, B., Hölbling, D., 2014. Object-Based Image Analysis and Digital Terrain Analysis for Locating Landslides in the Urmia Lake Basin, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 7 (12), 4806-4817.  http://dx.doi.org/10.1109/JSTARS.2014.2350036
  • Hagenlocher, Lang, S., Hölbling, D., Tiede, D., Kienberger, S., 2014. Modeling hotspots of climate change in the Sahel using object-based regionalization of multi-dimensional gridded datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 7 (1), 229-234.  https://ieeexplore.ieee.org/document/6515704
  • Tiede, D., Füreder, P., Lang, S., Hölbling, D., Zeil, P., 2013. Automated Analysis of Satellite Imagery to provide Information Products for Humanitarian Relief Operations in Refugee Camps – from Scientific Development towards Operational Services. PFG Photogrammetrie, Fernerkundung, Geoinformation, 3/2013, 185-195.  http://dx.doi.org/10.1127/1432-8364/2013/0169
  • Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., Lang, S., 2012. A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sensing, 4 (5), 1310-1336.  http://dx.doi.org/10.3390/rs4051310
  • Tiede, D., Lang, S., Füreder, P., Hölbling, D., Hoffmann, C., Zeil, P., 2011. Automated damage indication for rapid geospatial reporting. Photogrammetric Engineering & Remote Sensing, Special Issue: Haiti Earthquake, Part 1, 77 (2), 933-942.  https://doi.org/10.14358/PERS.77.9.933
  • Lang, S., Tiede, D., Hölbling, D., Füreder, P., Zeil, P., 2010. Earth observation (EO)-based ex post assessment of internally displaced person (IDP) camp evolution and population dynamics in Zam Zam, Darfur. International Journal of Remote Sensing, 31 (21), 5709-5731.  http://dx.doi.org/10.1080/01431161.2010.496803
  • Tiede, D., Lang, S., Albrecht, F., Hölbling, D., 2010. Object-based class modeling for cadastre-constrained delineation of geo-objects. Photogrammetric Engineering and Remote Sensing (PE&RS), 76 (2), 193-202.  http://dx.doi.org/10.14358/PERS.76.2.193

Projects

Current Projects

  • STEC: Smarter Targeting of Erosion Control [Ministry of Business, Innovation and Employment (MBIE) of New Zealand; 10/2018 – 09/2023]
  • HAGL: Auswirkungen von Hagelereignissen auf die Landwirtschaft: Eine fernerkundungsbasierte Analyse von Hagelschäden im Kontext des Klimawandels (Impact of hail events on agriculture: A remote sensing-based analysis of hail damage in the context of climate change) [StartClim; 10/2022 – 07/2023]
  • SliDEM: Assessing the suitability of DEMs derived from Sentinel-1 for landslide volume estimation [FFG ASAP; 09/2021 – 10/2022]

Completed Projects

  • MontEO: The impact of mass movements on alpine trails and huts assessed by EO data [FFG ASAP; 01/2020 – 04/2022]
  • RiCoLa: Detection and Analysis of Landslide-induced River Course Changes and Lake Formation [ÖAW; 08/2017 – 06/2021]
  • MORPH: Mapping, Monitoring and Modelling the Spatio-Temporal Dynamics of Land Surface Morphology [FWF; 11/2016 – 09/2020]
  • citizenMorph: Observation and Reporting of Landscape Dynamics by Citizens [FWF – Top Citizen Science (TCS); 07/2018 – 06/2020]
  • Is the occurrence of slope movements in the Cordillera Blanca, Peru, influenced by the El Niño Southern Oscillation? [OeAD WTZ Mobility Project (AT – CZ); 01/2018 – 12/2019]
  • EMMIRS: Environmental Mapping and Monitoring of Iceland by Remote Sensing [RANNIS; 2015 – 2018]
  • grünOase: Integrated Analysis and Assessment of Green City Oases [FFG, Austrian Climate and Energy Fund; 04/2017 – 04/2018]
  • : EO-based landslide mapping: from methodological developments to automated web-based information delivery [FFG ASAP; 03/2015 – 08/2017]
  • TIRAMISU: Toolbox Implementation for Removal of Anti-personnel Mines, Submunitions and Uxo [EC FP7-Security; 01/2012 – 12/2015]
  • iSLIDE: Integrated Semi-automated Landslide Delineation, Classification and Evaluation [FWF; 03/2013 – 09/2015]
  • SAFER: Services and Applications For Emergency Response [EC FP7-SPACE; 01/2009 – 03/2012]
  • G-MOSAIC: GMES Services for Management of Operations, Situation Awareness and Intelligence for regional Crises [EC FP7-SPACE; 01/2009 – 03/2012]
  • UNEP SAHEL MAPPING: Livelihood Security: Climate Change, Migration and Conflict [UNEP; 07/2010 – 11/2011]
  • LIMES: Land and Sea Integrated Monitoring for European Security [EC FP6-SPACE; 12/2006 – 05/2010]
  • BIMS: Biotope information and management system [contract research “Verband Region Stuttgart”, Germany; 2006 – 2007]